Rain on your Parade

Problem Description
You’re giving a party in the garden of your villa by the sea. The party is a huge success, and everyone is here. It’s a warm, sunny evening, and a soothing wind sends fresh, salty air from the sea. The evening is progressing just as you had imagined. It could
be the perfect end of a beautiful day.
But nothing ever is perfect. One of your guests works in weather forecasting. He suddenly yells, “I know that breeze! It means its going to rain heavily in just a few minutes!” Your guests all wear their best dresses and really would not like to get wet, hence
they stand terrified when hearing the bad news.
You have prepared a few umbrellas which can protect a few of your guests. The umbrellas are small, and since your guests are all slightly snobbish, no guest will share an umbrella with other guests. The umbrellas are spread across your (gigantic) garden, just
like your guests. To complicate matters even more, some of your guests can’t run as fast as the others.
Can you help your guests so that as many as possible find an umbrella before it starts to pour?

Given the positions and speeds of all your guests, the positions of the umbrellas, and the time until it starts to rain, find out how many of your guests can at most reach an umbrella. Two guests do not want to share an umbrella, however. 

 
Input
The input starts with a line containing a single integer, the number of test cases.
Each test case starts with a line containing the time t in minutes until it will start to rain (1 <=t <= 5). The next line contains the number of guests m (1 <= m <= 3000), followed by m lines containing x- and y-coordinates as well as the speed si in units
per minute (1 <= si <= 3000) of the guest as integers, separated by spaces. After the guests, a single line contains n (1 <= n <= 3000), the number of umbrellas, followed by n lines containing the integer coordinates of each umbrella, separated
by a space.
The absolute value of all coordinates is less than 10000.
 
Output
For each test case, write a line containing “Scenario #i:”, where i is the number of the test case starting at 1. Then, write a single line that contains the number of guests that can at most reach an umbrella before it starts to rain. Terminate every test
case with a blank line.
 
Sample Input
2
1
2
1 0 3
3 0 3
2
4 0
6 0
1
2
1 1 2
3 3 2
2
2 2
4 4
 
Sample Output
Scenario #1:
2

Scenario #2:
2

 
Source
 
Recommend
lcy
 

——————————————————————————————————

题目的意思是给出那个人的位置和速度,m把伞的位置,问t秒内最多少人拿到伞

思路:拿人和伞进行二分图匹配,数据较大匈牙利炸,用Hopcroft-Karp方法

#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <queue>
#include <vector>
#include <set>
#include <stack>
#include <map>
#include <climits>
using namespace std; const int MAXN = 3010;//左边节点数量、右边节点数量
const int MAXM = 3010*3010;//边的数量
const int INF = 0x7FFFFFFF; struct Edge
{
int v;
int next;
} edge[MAXM]; int nx, ny;
int cnt;
int dis; int first[MAXN];
int xlink[MAXN], ylink[MAXN];
/*xlink[i]表示左集合顶点所匹配的右集合顶点序号,ylink[i]表示右集合i顶点匹配到的左集合顶点序号。*/
int dx[MAXN], dy[MAXN];
/*dx[i]表示左集合i顶点的距离编号,dy[i]表示右集合i顶点的距离编号*/
int vis[MAXN]; //寻找增广路的标记数组 struct point
{
int x,y,v;
} a[MAXN],b[MAXN]; void init()
{
cnt = 0;
memset(first, -1, sizeof(first));
memset(xlink, -1, sizeof(xlink));
memset(ylink, -1, sizeof(ylink));
} void read_graph(int u, int v)
{
edge[cnt].v = v;
edge[cnt].next = first[u], first[u] = cnt++;
} int bfs()
{
queue<int> q;
dis = INF;
memset(dx, -1, sizeof(dx));
memset(dy, -1, sizeof(dy));
for(int i = 0; i < nx; i++)
{
if(xlink[i] == -1)
{
q.push(i);
dx[i] = 0;
}
}
while(!q.empty())
{
int u = q.front();
q.pop();
if(dx[u] > dis) break;
for(int e = first[u]; e != -1; e = edge[e].next)
{
int v = edge[e].v;
if(dy[v] == -1)
{
dy[v] = dx[u] + 1;
if(ylink[v] == -1) dis = dy[v];
else
{
dx[ylink[v]] = dy[v]+1;
q.push(ylink[v]);
}
}
}
}
return dis != INF;
} int find(int u)
{
for(int e = first[u]; e != -1; e = edge[e].next)
{
int v = edge[e].v;
if(!vis[v] && dy[v] == dx[u]+1)
{
vis[v] = 1;
if(ylink[v] != -1 && dy[v] == dis) continue;
if(ylink[v] == -1 || find(ylink[v]))
{
xlink[u] = v, ylink[v] = u;
return 1;
}
}
}
return 0;
} int MaxMatch()
{
int ans = 0;
while(bfs())
{
memset(vis, 0, sizeof(vis));
for(int i = 0; i < nx; i++) if(xlink[i] == -1)
{
ans += find(i);
}
}
return ans;
} int main()
{
int T,t;
int q=1;
scanf("%d",&T);
while(T--)
{
init();
scanf("%d",&t);
scanf("%d",&nx);
for(int i=0; i<nx; i++)
{
scanf("%d%d%d",&a[i].x,&a[i].y,&a[i].v);
}
scanf("%d",&ny);
for(int i=0; i<ny; i++)
{
scanf("%d%d",&b[i].x,&b[i].y);
}
for(int i=0; i<nx; i++)
for(int j=0; j<ny; j++)
{
if((a[i].x-b[j].x)*(a[i].x-b[j].x)+(a[i].y-b[j].y)*(a[i].y-b[j].y)<=t*a[i].v*t*a[i].v)
read_graph(i,j);
} int ans = MaxMatch(); printf("Scenario #%d:\n%d\n\n",q++,ans);
} return 0;
}

  

Hdu2389 Rain on your Parade (HK二分图最大匹配)的更多相关文章

  1. HDU2389:Rain on your Parade(二分图最大匹配+HK算法)

    Rain on your Parade Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 655350/165535 K (Java/Ot ...

  2. HDU2389 Rain on your Parade —— 二分图最大匹配 HK算法

    题目链接:https://vjudge.net/problem/HDU-2389 Rain on your Parade Time Limit: 6000/3000 MS (Java/Others)  ...

  3. HDU 2389 Rain on your Parade / HUST 1164 4 Rain on your Parade(二分图的最大匹配)

    HDU 2389 Rain on your Parade / HUST 1164 4 Rain on your Parade(二分图的最大匹配) Description You're giving a ...

  4. hdu-2389.rain on your parade(二分匹配HK算法)

    Rain on your Parade Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 655350/165535 K (Java/Ot ...

  5. hdu2389 Rain on your Parade 二分图匹配--HK算法

    You’re giving a party in the garden of your villa by the sea. The party is a huge success, and every ...

  6. HDU2389(KB10-F 二分图最大匹配Hopcroft_Karp)

    Rain on your Parade Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 655350/165535 K (Java/Ot ...

  7. HDU 2389 ——Rain on your Parade——————【Hopcroft-Karp求最大匹配、sqrt(n)*e复杂度】

    Rain on your Parade Time Limit:3000MS     Memory Limit:165535KB     64bit IO Format:%I64d & %I64 ...

  8. Hdu 3289 Rain on your Parade (二分图匹配 Hopcroft-Karp)

    题目链接: Hdu 3289 Rain on your Parade 题目描述: 有n个客人,m把雨伞,在t秒之后将会下雨,给出每个客人的坐标和每秒行走的距离,以及雨伞的位置,问t秒后最多有几个客人可 ...

  9. Rain on your Parade

    Rain on your Parade Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 655350/165535 K (Java/Ot ...

随机推荐

  1. 5J - 复习时间

    为了能过个好年,xhd开始复习了,于是每天晚上背着书往教室跑.xhd复习有个习惯,在复习完一门课后,他总是挑一门更简单的课进行复习,而他复习这门课的效率为两门课的难度差的平方,而复习第一门课的效率为1 ...

  2. 5D - Rectangles

    Given two rectangles and the coordinates of two points on the diagonals of each rectangle,you have t ...

  3. mysql 压缩方法

    show global variables like 'innodb_file_format%';alter table t row_format=COMPRESSED;

  4. python 日志滚动 分文件

    import logging from logging.handlers import RotatingFileHandler import datetime import os def main() ...

  5. 52ABP视频学习

    https://study.163.com/course/courseMain.htm?courseId=1005208064 网易视频 https://www.52abp.com/ReadWiki/ ...

  6. ERROR - abandon connection, open stackTrace

    项目采用的是阿里巴巴的druid连接池,配置文件中有个removeAbandoned的配置(意义是某个连接如果超过设置的连接活动时间的话,连接会被强制关掉),但是因为爬虫中某些连接会长时间处于活动状态 ...

  7. ''TclError: no display name and no $DISPLAY environment variable''解决方法

    在模块前写入一下代码: import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt 具体解释见   http://m ...

  8. 乘积最大(NOIP2000&NOIP水题测试(2017082301))

    题目链接:乘积最大 这道题显然是道区间dp. 难度不是很大. 思路也很清晰. 我们设计一个三维状态. ans[l][r][k] 这里表示在闭区间[l,r]上操作k次的最大值. 操作就是加乘号. 转移也 ...

  9. oracle 中删除表 drop delete truncate

    oracle 中删除表 drop delete truncate   相同点,使用drop delete truncate 都会删除表中的内容 drop table 表名 delete from 表名 ...

  10. 23.Xcode中常用的快捷键操作

    1.工程导航器:command+1 浏览文件夹,控制器,图片等 2.显示/隐藏导航器面板:Command+0 隐藏左边工具栏 3.显示/隐藏实用工具面板:Command+Option+0 使用工具面板 ...