ACM-ICPC 2018 徐州赛区网络预赛 J Maze Designer(最大生成树,倍增lca)
https://nanti.jisuanke.com/t/31462
要求在一个矩形中任意选两个点都有唯一的通路,所以不会建多余的墙。
要求满足上述情况下,建墙的费用最小。理解题意后容易想到首先假设全部墙都建起来,然后拆掉费用最大的边使图成为一棵树,就是求一颗最大生成树
求出最大生成树后,求任意两点的距离,直接用lca就可以
思路
#include<bits/stdc++.h>
#define M 300005
#define pb push_back
using namespace std;
struct E{
int u,v,w;
E(int w,int u,int v):w(w),u(u),v(v){}
bool operator<(const E& rhp)const{
return w>rhp.w;
}
};
vector<E>e;
int fa[M];int fin(int u){return fa[u]==u?u:fa[u]=fin(fa[u]);}
int pr[M][30],d[M],n,m,i,j,a,b,u,v,x,y,x1,x2,Y1,y2,LCA,q;
char s[10];
vector<int>g[M];
void dfs(int u,int fa){
pr[u][0]=fa;
for(int i=1;i<=19;i++)pr[u][i]=pr[pr[u][i-1]][i-1];
for(int i=0;i<g[u].size();i++){
int v=g[u][i];if(v==fa)continue;
d[v]=d[u]+1;
dfs(v,u);
}
}
int lca(int u,int v){
if(d[u]<d[v])swap(u,v);
int dep=d[u]-d[v];
for(int i=19;i>=0;i--){
if(dep&(1<<i)){
dep^=(1<<i);
u=pr[u][i];
}
}
if(u==v)return u;
for(int i=19;i>=0;i--){
if(pr[u][i]!=pr[v][i]){
u=pr[u][i];v=pr[v][i];
}
}
return pr[u][0];
}
int main(){
scanf("%d%d",&n,&m);
for(i=1;i<=n*m+m;i++)fa[i]=i;
for(i=1;i<=n;i++){
for(j=1;j<=m;j++){
scanf("%s %d %s %d",s,&a,s,&b);
if(i<n){
e.pb(E(a,i*m+j,(i+1)*m+j));
}
if(j<m){
e.pb(E(b,i*m+j,i*m+j+1));
}
}
}
sort(e.begin(),e.end());
for(i=0;i<e.size();i++){
u=e[i].u;v=e[i].v;
x=fin(u);y=fin(v);
if(x!=y){
fa[x]=y;
g[u].pb(v);g[v].pb(u);
}
}
dfs(1*m+1,0);
scanf("%d",&q);
while(q--){
scanf("%d%d%d%d",&x1,&Y1,&x2,&y2);
u=x1*m+Y1;v=x2*m+y2;
LCA=lca(u,v);
printf("%d\n",d[u]+d[v]-2*d[LCA]);
}
}
ACM-ICPC 2018 徐州赛区网络预赛 J Maze Designer(最大生成树,倍增lca)的更多相关文章
- ACM-ICPC 2018 徐州赛区网络预赛 J. Maze Designer (最大生成树+LCA求节点距离)
ACM-ICPC 2018 徐州赛区网络预赛 J. Maze Designer J. Maze Designer After the long vacation, the maze designer ...
- ACM-ICPC 2018 徐州赛区网络预赛 J. Maze Designer 最大生成树 lca
大概就是要每两个点 只能有一条路径,并且约束,最短的边用来砌墙,那么反之的意思就是最大的边用来穿过 故最大生成树 生成以后 再用lca计算树上两点间的距离 (当然防止生成树是一条链,可以用树的重心作为 ...
- ACM-ICPC 2018 徐州赛区网络预赛 J Maze Designer(最大生成树+LCA)
https://nanti.jisuanke.com/t/31462 题意 一个N*M的矩形,每个格点到其邻近点的边有其权值,需要构建出一个迷宫,使得构建迷宫的边权之和最小,之后Q次查询,每次给出两点 ...
- ACM-ICPC 2018 徐州赛区网络预赛 J. Maze Designer
传送门:https://nanti.jisuanke.com/t/31462 本题是一个树上的问题:结点间路径问题. 给定一个有N×M个结点的网格,并给出结点间建立墙(即拆除边)的代价.花费最小的代价 ...
- ACM-ICPC 2018 徐州赛区网络预赛 G. Trace (思维,贪心)
ACM-ICPC 2018 徐州赛区网络预赛 G. Trace (思维,贪心) Trace 问答问题反馈 只看题面 35.78% 1000ms 262144K There's a beach in t ...
- 计蒜客 1460.Ryuji doesn't want to study-树状数组 or 线段树 (ACM-ICPC 2018 徐州赛区网络预赛 H)
H.Ryuji doesn't want to study 27.34% 1000ms 262144K Ryuji is not a good student, and he doesn't wa ...
- ACM-ICPC 2018 徐州赛区网络预赛 B(dp || 博弈(未完成)
传送门 题面: In a world where ordinary people cannot reach, a boy named "Koutarou" and a girl n ...
- ACM-ICPC 2018 徐州赛区网络预赛 B. BE, GE or NE
In a world where ordinary people cannot reach, a boy named "Koutarou" and a girl named &qu ...
- ACM-ICPC 2018 徐州赛区网络预赛 F. Features Track
262144K Morgana is learning computer vision, and he likes cats, too. One day he wants to find the ...
随机推荐
- 转:JMeter压力测试及并发量计算
最近的一个项目刚刚开发完,因为不是专业测试人员,所以记录下测试过程以备时间长忘记了. 一.JMeter的安装(Linux)1. 下载JMeter:这个就不细说了,直接去(http://jmeter.a ...
- python----二叉树实现及相关操作
一.二叉树子节点个数 #初始化叶子节点和根结点 class treeNode(): def __init__(self,data=-1,left=None,right=None): self.data ...
- Windows 64 位 mysql 5.7.20 安装教程
mysql 5.7以上版本包解压中没有data目录和my-default.ini和my.ini文件以及服务无法启动的解决办法以及修改初始密码的方法 mysql官网下载地址:https://dev.my ...
- IOS开发之无法选择模拟器显示NO Scheme
1. 不是 文件冲突的 看这个链接https://blog.csdn.net/sanpintian/article/details/7377365 2.文件冲突的 打开工程文件. 打开 直接 搜索 ...
- PHP守护进程化
什么是守护进程? 一个守护进程通常补认为是一个不对终端进行控制的后台任务.它有三个很显著的特征:在后台运行,与启动他的进程脱离,无须控制终端.常用的实现方式是fork() -> setsid() ...
- vue-router2
六,导航钩子 导航钩子函数主要是在导航跳转的时候做一些操作,比如跳转页面之前,进行判断 进而选择跳转到哪里 钩子函数根据生效范围根据其生效范围可以分为全局钩子函数,路由独享钩子函数 和 组件钩子函数. ...
- git bash 基本命令
1.打开git bash界面后,进入某个目录下时时,可以使用cd 命令,cd时change directory的简写,表示改变目录,比如,想切换到某个盘符下,可以使用cd g:,则会进入到g盘路径下, ...
- pthreads v3在centos7下的安装与配置
我的centos版本是7.4.1708,php的版本是7.2.4(注意要是线程安全版),如下图所示: 首先我们在如下网址下载好pthreads的源码: http://pecl.php.net/pack ...
- Python ctypes.windll.user32() Examples
Example 1 Project: OSPTF Author: xSploited File: mouselogger.py View Source Project 7 votes def ...
- (转)Android中Parcelable接口用法
1. Parcelable接口 Interface for classes whose instances can be written to and restored from a Parcel. ...