Caffe 深度学习框架上手教程
Caffe 深度学习框架上手教程
Caffe (CNN, deep learning) 介绍
Caffe -----------Convolution Architecture For Feature Embedding (Extraction)
- Caffe 是什么东东?
- CNN (Deep Learning) 工具箱
- C++ 语言架构
- CPU 和GPU 无缝交换
- Python 和matlab的封装
- 但是,Decaf只是CPU 版本。
为什么要用Caffe?
- 运算速度快。简单 友好的架构 用到的一些库:
- Google Logging library (Glog): 一个C++语言的应用级日志记录框架,提供了C++风格的流操作和各种助手宏.
- lebeldb(数据存储): 是一个google实现的非常高效的kv数据库,单进程操作。
- CBLAS library(CPU版本的矩阵操作)
- CUBLAS library (GPU 版本的矩阵操作)
Caffe 架构
- 预处理图像的leveldb构建
输入:一批图像和label (2和3)
输出:leveldb (4)
指令里包含如下信息:- conver_imageset (构建leveldb的可运行程序)
- train/ (此目录放处理的jpg或者其他格式的图像)
- label.txt (图像文件名及其label信息)
- 输出的leveldb文件夹的名字
- CPU/GPU (指定是在cpu上还是在gpu上运行code)
CNN网络配置文件
- Imagenet_solver.prototxt (包含全局参数的配置的文件)
- Imagenet.prototxt (包含训练网络的配置的文件)
- Imagenet_val.prototxt (包含测试网络的配置文件)
1 回复
Caffe深度学习之图像分类模型AlexNet解读
在imagenet上的图像分类challenge上Alex提出的alexnet网络结构模型赢得了2012届的冠军。要研究CNN类型DL网络模型在图像分类上的应用,就逃不开研究alexnet,这是CNN在图像分类上的经典模型(DL火起来之后)。
在DL开源实现caffe的model样例中,它也给出了alexnet的复现,具体网络配置文件如下train_val.prototxt452
接下来本文将一步步对该网络配置结构中各个层进行详细的解读(训练阶段):
conv1阶段DFD(data flow diagram):
conv2阶段DFD(data flow diagram):
conv3阶段DFD(data flow diagram):
SouthEast2455x274conv4阶段DFD(data flow diagram):
conv5阶段DFD(data flow diagram):
fc6阶段DFD(data flow diagram):
fc7阶段DFD(data flow diagram):
fc8阶段DFD(data flow diagram):
各种layer的operation更多解释可以参考Caffe Layer Catalogue356
从计算该模型的数据流过程中,该模型参数大概5kw+。
caffe的输出中也有包含这块的内容日志,详情如下:
I0721 10:38:15.326920 4692 net.cpp:125] Top shape: 256 3 227 227 (39574272)
I0721 10:38:15.326971 4692 net.cpp:125] Top shape: 256 1 1 1 (256)
I0721 10:38:15.326982 4692 net.cpp:156] data does not need backward computation.
I0721 10:38:15.327003 4692 net.cpp:74] Creating Layer conv1
I0721 10:38:15.327011 4692 net.cpp:84] conv1 <- data
I0721 10:38:15.327033 4692 net.cpp:110] conv1 -> conv1
I0721 10:38:16.721956 4692 net.cpp:125] Top shape: 256 96 55 55 (74342400)
I0721 10:38:16.722030 4692 net.cpp:151] conv1 needs backward computation.
I0721 10:38:16.722059 4692 net.cpp:74] Creating Layer relu1
I0721 10:38:16.722070 4692 net.cpp:84] relu1 <- conv1
I0721 10:38:16.722082 4692 net.cpp:98] relu1 -> conv1 (in-place)
I0721 10:38:16.722096 4692 net.cpp:125] Top shape: 256 96 55 55 (74342400)
I0721 10:38:16.722105 4692 net.cpp:151] relu1 needs backward computation.
I0721 10:38:16.722116 4692 net.cpp:74] Creating Layer pool1
I0721 10:38:16.722125 4692 net.cpp:84] pool1 <- conv1
I0721 10:38:16.722133 4692 net.cpp:110] pool1 -> pool1
I0721 10:38:16.722167 4692 net.cpp:125] Top shape: 256 96 27 27 (17915904)
I0721 10:38:16.722187 4692 net.cpp:151] pool1 needs backward computation.
I0721 10:38:16.722205 4692 net.cpp:74] Creating Layer norm1
I0721 10:38:16.722221 4692 net.cpp:84] norm1 <- pool1
I0721 10:38:16.722234 4692 net.cpp:110] norm1 -> norm1
I0721 10:38:16.722251 4692 net.cpp:125] Top shape: 256 96 27 27 (17915904)
I0721 10:38:16.722260 4692 net.cpp:151] norm1 needs backward computation.
I0721 10:38:16.722272 4692 net.cpp:74] Creating Layer conv2
I0721 10:38:16.722280 4692 net.cpp:84] conv2 <- norm1
I0721 10:38:16.722290 4692 net.cpp:110] conv2 -> conv2
I0721 10:38:16.725225 4692 net.cpp:125] Top shape: 256 256 27 27 (47775744)
I0721 10:38:16.725242 4692 net.cpp:151] conv2 needs backward computation.
I0721 10:38:16.725253 4692 net.cpp:74] Creating Layer relu2
I0721 10:38:16.725261 4692 net.cpp:84] relu2 <- conv2
I0721 10:38:16.725270 4692 net.cpp:98] relu2 -> conv2 (in-place)
I0721 10:38:16.725280 4692 net.cpp:125] Top shape: 256 256 27 27 (47775744)
I0721 10:38:16.725288 4692 net.cpp:151] relu2 needs backward computation.
I0721 10:38:16.725298 4692 net.cpp:74] Creating Layer pool2
I0721 10:38:16.725307 4692 net.cpp:84] pool2 <- conv2
I0721 10:38:16.725317 4692 net.cpp:110] pool2 -> pool2
I0721 10:38:16.725329 4692 net.cpp:125] Top shape: 256 256 13 13 (11075584)
I0721 10:38:16.725338 4692 net.cpp:151] pool2 needs backward computation.
I0721 10:38:16.725358 4692 net.cpp:74] Creating Layer norm2
I0721 10:38:16.725368 4692 net.cpp:84] norm2 <- pool2
I0721 10:38:16.725378 4692 net.cpp:110] norm2 -> norm2
I0721 10:38:16.725389 4692 net.cpp:125] Top shape: 256 256 13 13 (11075584)
I0721 10:38:16.725399 4692 net.cpp:151] norm2 needs backward computation.
I0721 10:38:16.725409 4692 net.cpp:74] Creating Layer conv3
I0721 10:38:16.725419 4692 net.cpp:84] conv3 <- norm2
I0721 10:38:16.725427 4692 net.cpp:110] conv3 -> conv3
I0721 10:38:16.735193 4692 net.cpp:125] Top shape: 256 384 13 13 (16613376)
I0721 10:38:16.735213 4692 net.cpp:151] conv3 needs backward computation.
I0721 10:38:16.735224 4692 net.cpp:74] Creating Layer relu3
I0721 10:38:16.735234 4692 net.cpp:84] relu3 <- conv3
I0721 10:38:16.735242 4692 net.cpp:98] relu3 -> conv3 (in-place)
I0721 10:38:16.735250 4692 net.cpp:125] Top shape: 256 384 13 13 (16613376)
I0721 10:38:16.735258 4692 net.cpp:151] relu3 needs backward computation.
I0721 10:38:16.735302 4692 net.cpp:74] Creating Layer conv4
I0721 10:38:16.735312 4692 net.cpp:84] conv4 <- conv3
I0721 10:38:16.735321 4692 net.cpp:110] conv4 -> conv4
I0721 10:38:16.743952 4692 net.cpp:125] Top shape: 256 384 13 13 (16613376)
I0721 10:38:16.743988 4692 net.cpp:151] conv4 needs backward computation.
I0721 10:38:16.744000 4692 net.cpp:74] Creating Layer relu4
I0721 10:38:16.744010 4692 net.cpp:84] relu4 <- conv4
I0721 10:38:16.744020 4692 net.cpp:98] relu4 -> conv4 (in-place)
I0721 10:38:16.744030 4692 net.cpp:125] Top shape: 256 384 13 13 (16613376)
I0721 10:38:16.744038 4692 net.cpp:151] relu4 needs backward computation.
I0721 10:38:16.744050 4692 net.cpp:74] Creating Layer conv5
I0721 10:38:16.744057 4692 net.cpp:84] conv5 <- conv4
I0721 10:38:16.744067 4692 net.cpp:110] conv5 -> conv5
I0721 10:38:16.748935 4692 net.cpp:125] Top shape: 256 256 13 13 (11075584)
I0721 10:38:16.748955 4692 net.cpp:151] conv5 needs backward computation.
I0721 10:38:16.748965 4692 net.cpp:74] Creating Layer relu5
I0721 10:38:16.748975 4692 net.cpp:84] relu5 <- conv5
I0721 10:38:16.748983 4692 net.cpp:98] relu5 -> conv5 (in-place)
I0721 10:38:16.748998 4692 net.cpp:125] Top shape: 256 256 13 13 (11075584)
I0721 10:38:16.749011 4692 net.cpp:151] relu5 needs backward computation.
I0721 10:38:16.749022 4692 net.cpp:74] Creating Layer pool5
I0721 10:38:16.749030 4692 net.cpp:84] pool5 <- conv5
I0721 10:38:16.749039 4692 net.cpp:110] pool5 -> pool5
I0721 10:38:16.749050 4692 net.cpp:125] Top shape: 256 256 6 6 (2359296)
I0721 10:38:16.749058 4692 net.cpp:151] pool5 needs backward computation.
I0721 10:38:16.749074 4692 net.cpp:74] Creating Layer fc6
I0721 10:38:16.749083 4692 net.cpp:84] fc6 <- pool5
I0721 10:38:16.749091 4692 net.cpp:110] fc6 -> fc6
I0721 10:38:17.160079 4692 net.cpp:125] Top shape: 256 4096 1 1 (1048576)
I0721 10:38:17.160148 4692 net.cpp:151] fc6 needs backward computation.
I0721 10:38:17.160166 4692 net.cpp:74] Creating Layer relu6
I0721 10:38:17.160177 4692 net.cpp:84] relu6 <- fc6
I0721 10:38:17.160190 4692 net.cpp:98] relu6 -> fc6 (in-place)
I0721 10:38:17.160202 4692 net.cpp:125] Top shape: 256 4096 1 1 (1048576)
I0721 10:38:17.160212 4692 net.cpp:151] relu6 needs backward computation.
I0721 10:38:17.160222 4692 net.cpp:74] Creating Layer drop6
I0721 10:38:17.160230 4692 net.cpp:84] drop6 <- fc6
I0721 10:38:17.160238 4692 net.cpp:98] drop6 -> fc6 (in-place)
I0721 10:38:17.160258 4692 net.cpp:125] Top shape: 256 4096 1 1 (1048576)
I0721 10:38:17.160265 4692 net.cpp:151] drop6 needs backward computation.
I0721 10:38:17.160277 4692 net.cpp:74] Creating Layer fc7
I0721 10:38:17.160286 4692 net.cpp:84] fc7 <- fc6
I0721 10:38:17.160295 4692 net.cpp:110] fc7 -> fc7
I0721 10:38:17.342094 4692 net.cpp:125] Top shape: 256 4096 1 1 (1048576)
I0721 10:38:17.342157 4692 net.cpp:151] fc7 needs backward computation.
I0721 10:38:17.342175 4692 net.cpp:74] Creating Layer relu7
I0721 10:38:17.342185 4692 net.cpp:84] relu7 <- fc7
I0721 10:38:17.342198 4692 net.cpp:98] relu7 -> fc7 (in-place)
I0721 10:38:17.342208 4692 net.cpp:125] Top shape: 256 4096 1 1 (1048576)
I0721 10:38:17.342217 4692 net.cpp:151] relu7 needs backward computation.
I0721 10:38:17.342228 4692 net.cpp:74] Creating Layer drop7
I0721 10:38:17.342236 4692 net.cpp:84] drop7 <- fc7
I0721 10:38:17.342245 4692 net.cpp:98] drop7 -> fc7 (in-place)
I0721 10:38:17.342254 4692 net.cpp:125] Top shape: 256 4096 1 1 (1048576)
I0721 10:38:17.342262 4692 net.cpp:151] drop7 needs backward computation.
I0721 10:38:17.342274 4692 net.cpp:74] Creating Layer fc8
I0721 10:38:17.342283 4692 net.cpp:84] fc8 <- fc7
I0721 10:38:17.342291 4692 net.cpp:110] fc8 -> fc8
I0721 10:38:17.343199 4692 net.cpp:125] Top shape: 256 22 1 1 (5632)
I0721 10:38:17.343214 4692 net.cpp:151] fc8 needs backward computation.
I0721 10:38:17.343231 4692 net.cpp:74] Creating Layer loss
I0721 10:38:17.343240 4692 net.cpp:84] loss <- fc8
I0721 10:38:17.343250 4692 net.cpp:84] loss <- label
I0721 10:38:17.343264 4692 net.cpp:151] loss needs backward computation.
I0721 10:38:17.343305 4692 net.cpp:173] Collecting Learning Rate and Weight Decay.
I0721 10:38:17.343327 4692 net.cpp:166] Network initialization done.
I0721 10:38:17.343335 4692 net.cpp:167] Memory required for Data 1073760256
CIFAR-10在caffe上进行训练与学习
使用数据库:CIFAR-10
60000张 32X32 彩色图像 10类,50000张训练,10000张测试

准备
在终端运行以下指令:
cd $CAFFE_ROOT/data/cifar10
./get_cifar10.sh
cd $CAFFE_ROOT/examples/cifar10
./create_cifar10.sh
其中CAFFE_ROOT是caffe-master在你机子的地址
运行之后,将会在examples中出现数据库文件./cifar10-leveldb和数据库图像均值二进制文件./mean.binaryproto

模型
该CNN由卷积层,POOLing层,非线性变换层,在顶端的局部对比归一化线性分类器组成。该模型的定义在CAFFE_ROOT/examples/cifar10 directory’s cifar10_quick_train.prototxt中,可以进行修改。其实后缀为prototxt很多都是用来修改配置的。

训练和测试
训练这个模型非常简单,当我们写好参数设置的文件cifar10_quick_solver.prototxt和定义的文件cifar10_quick_train.prototxt和cifar10_quick_test.prototxt后,运行train_quick.sh或者在终端输入下面的命令:
cd $CAFFE_ROOT/examples/cifar10
./train_quick.sh
即可,train_quick.sh是一个简单的脚本,会把执行的信息显示出来,培训的工具是train_net.bin,cifar10_quick_solver.prototxt作为参数。
然后出现类似以下的信息:这是搭建模型的相关信息
I0317 21:52:48.945710 2008298256 net.cpp:74] Creating Layer conv1
I0317 21:52:48.945716 2008298256 net.cpp:84] conv1 <- data
I0317 21:52:48.945725 2008298256 net.cpp:110] conv1 -> conv1
I0317 21:52:49.298691 2008298256 net.cpp:125] Top shape: 100 32 32 32 (3276800)
I0317 21:52:49.298719 2008298256 net.cpp:151] conv1 needs backward computation.
接着:
0317 21:52:49.309370 2008298256 net.cpp:166] Network initialization done.
I0317 21:52:49.309376 2008298256 net.cpp:167] Memory required for Data 23790808
I0317 21:52:49.309422 2008298256 solver.cpp:36] Solver scaffolding done.
I0317 21:52:49.309447 2008298256 solver.cpp:47] Solving CIFAR10_quick_train
之后,训练开始
I0317 21:53:12.179772 2008298256 solver.cpp:208] Iteration 100, lr = 0.001
I0317 21:53:12.185698 2008298256 solver.cpp:65] Iteration 100, loss = 1.73643
...
I0317 21:54:41.150030 2008298256 solver.cpp:87] Iteration 500, Testing net
I0317 21:54:47.129461 2008298256 solver.cpp:114] Test score #0: 0.5504
I0317 21:54:47.129500 2008298256 solver.cpp:114] Test score #1: 1.27805
其中每100次迭代次数显示一次训练时lr(learningrate),和loss(训练损失函数),每500次测试一次,输出score 0(准确率)和score 1(测试损失函数)
当5000次迭代之后,正确率约为75%,模型的参数存储在二进制protobuf格式在cifar10_quick_iter_5000
然后,这个模型就可以用来运行在新数据上了。
其他
另外,更改cifar*solver.prototxt文件可以使用CPU训练,
# solver mode: CPU or GPU
solver_mode: CPU
可以看看CPU和GPU训练的差别。
主要资料来源:caffe官网教程
Caffe 深度学习框架上手教程的更多相关文章
- [转]Caffe 深度学习框架上手教程
Caffe 深度学习框架上手教程 机器学习Caffe caffe 原文地址:http://suanfazu.com/t/caffe/281 blink 15年1月 6 Caffe448是一个清 ...
- Ubuntu 14.04 安装caffe深度学习框架
简介:如何在ubuntu 14.04 下安装caffe深度学习框架. 注:安装caffe时一定要保持网络状态好,不然会遇到很多麻烦.例如下载不了,各种报错. 一.安装依赖包 $ sudo apt-ge ...
- Caffe 深度学习框架介绍
转自:http://suanfazu.com/t/caffe/281 Caffe是一个清晰而高效的深度学习框架,其作者是博士毕业于UC Berkeley的贾扬清,目前在Google工作. Caffe是 ...
- TensorFlow实战Google深度学习框架-人工智能教程-自学人工智能的第二天-深度学习
自学人工智能的第一天 "TensorFlow 是谷歌 2015 年开源的主流深度学习框架,目前已得到广泛应用.本书为 TensorFlow 入门参考书,旨在帮助读者以快速.有效的方式上手 T ...
- 从TensorFlow 到 Caffe2:盘点深度学习框架
机器之心报道 本文首先介绍GitHub中最受欢迎的开源深度学习框架排名,然后再对其进行系统地对比 下图总结了在GitHub中最受欢迎的开源深度学习框架排名,该排名是基于各大框架在GitHub里的收藏数 ...
- 贾扬清分享_深度学习框架caffe
Caffe是一个清晰而高效的深度学习框架,其作者是博士毕业于UC Berkeley的 贾扬清,目前在Google工作.本文是根据机器学习研究会组织的online分享的交流内容,简单的整理了一下. 目录 ...
- Sony深度学习框架 - Neural Network Console - 教程(1)- 原来深度学习可以如此简单
“什么情况!?居然不是黑色背景+白色文字的命令行.对,今天要介绍的是一个拥有白嫩的用户界面的深度学习框架.” 人工智能.神经网络.深度学习,这些概念近年已经涌入每个人的生活中,我想很多人早就按捺不住想 ...
- 转:TensorFlow和Caffe、MXNet、Keras等其他深度学习框架的对比
http://geek.csdn.net/news/detail/138968 Google近日发布了TensorFlow 1.0候选版,这第一个稳定版将是深度学习框架发展中的里程碑的一步.自Tens ...
- Caffe深度学习计算框架
Caffe | Deep Learning Framework是一个清晰而高效的深度学习框架,其作者是博士毕业于UC Berkeley的 Yangqing Jia,目前在Google工作.Caffe是 ...
随机推荐
- 绝版Node--Sequlize搭建服务(Node全栈之路)
绝版Node--Sequlize搭建服务(Node全栈之路) 参考资料:https://itbilu.com/nodejs/npm/VkYIaRPz-.html 准备环境:Mysql,Node 前沿: ...
- CSS实现鼠标经过网页图标弹出微信二维码
特点 1.纯CSS实现二维码展示功能,减少加载JS: 2.使用CSS3 transform 属性: ## 第一步 在需要展示二维码的地方添加如下代码,其中<a>标签内容可以根据需要修改成 ...
- MySQL——索引实现原理
在MySQL中,索引属于存储引擎级别的概念,不同存储引擎对索引的实现方式是不同的,本文主要讨论MyISAM和InnoDB两个存储引擎的索引实现方式. MyISAM索引实现 MyISAM引擎使用B+Tr ...
- Windows桌面.exe程序安装、卸载、升级测试用例
一.安装 1) 系统:XP.win 7.win 8.win 10 2)安全类型软件:360杀毒.360安全卫士.金山毒霸.百度杀毒.腾讯电脑管家等. 3)同类型软件兼容 4)用户名称:中文用户.英文用 ...
- ionic默认样式android和ios差异
ionicframework中android和ios在默认样式上有一些不同的地方,官方文档中都有说明,但是经常会想不起. 一.差异: 1.tab位置,$ionicConfigProvider, tab ...
- Hibernate中Session.get()方法和load()方法的详细比较
一.get方法和load方法的简易理解 (1)get()方法直接返回实体类,如果查不到数据则返回null.load()会返回一个实体代理对象(当前这个对象可以自动转化为实体对象),但当代理对象被调用 ...
- SQL 中常用存储过程xp_cmdshell运行cmd命令 (转载)
目的:使用SQL语句,在D盘创建一个文件夹myfile 首先查询系统配置 SELECT * FROM sys.configurations WHERE name='xp_cmdshell' OR na ...
- Sql server中的 nvarchar(max) 到底有多大?(转载)
问题: SQL server中的nvarchar(max)最大的长度是4000个字吗? 如果字段的内容超过4000个字时用什么类型呢?text 还是binary?他们的最大长度是多少?比如字段放的是长 ...
- 学习笔记:MySQL Big DELETEs 删除大量数据
原文地址:http://mysql.rjweb.org/doc.php/deletebig Table of Contents The ProblemWhy it is a ProblemInnoDB ...
- Linux 下解压 rar 文件
网上下载rar 压缩文件的使用,在linux在我们需要对其进行解压缩,这个时候,我们需要安装 rar相关的文件,来进行解压缩. 1. 下载 我们进入rarlab网站,进行下载 rar for linu ...