洛谷P3950 部落冲突(LCT)
最无脑LCT题解,Dalao们的各种算法都比这个好多啦。。。
唯一的好处就是只管码代码就好了
开战cut,停战link,询问findroot判连通性
太无脑,应该不用打注释了。常数大就不用说了(逃
#include<cstdio>
#include<cstdlib>
#define R register int
#define I inline void
#define lc c[x][0]
#define rc c[x][1]
#define G ch=getchar()
#define gc G;while(ch<'-')G
#define in(z) gc;z=ch&15;G;while(ch>'-')z*=10,z+=ch&15,G;
const int N=300009;
int f[N],c[N][2],st[N],u[N],v[N];
bool r[N];
inline bool nroot(R x){
return c[f[x]][0]==x||c[f[x]][1]==x;
}
I pushdown(R x){
if(r[x]){
R t=lc;lc=rc;rc=t;
r[lc]^=1,r[rc]^=1,r[x]=0;
}
}
I rotate(R x){
R y=f[x],z=f[y],k=c[y][1]==x,w=c[x][!k];
if(nroot(y))c[z][c[z][1]==y]=x;c[x][!k]=y;c[y][k]=w;
if(w)f[w]=y;f[y]=x;f[x]=z;
}
I splay(R x){
R y=x,z=0;
st[++z]=y;
while(nroot(y))st[++z]=y=f[y];
while(z)pushdown(st[z--]);
while(nroot(x)){
y=f[x];z=f[y];
if(nroot(y))
rotate((c[y][0]==x)^(c[z][0]==y)?y:x);
rotate(x);
}
}
I access(R x){
for(R y=0;x;x=f[y=x])
splay(x),rc=y;
}
I makeroot(R x){
access(x);splay(x);
r[x]^=1;
}
inline int findroot(R x){
access(x);splay(x);
pushdown(x);
while(lc)pushdown(x=lc);
return x;
}
I split(R x,R y){
makeroot(x);
access(y);splay(y);
}
I link(R x,R y){
makeroot(x);f[x]=y;
}
I cut(R x,R y){
split(x,y);f[x]=c[y][0]=0;
}
int main()
{
register char ch;
R n,m,p=0,a,b;
in(n);in(m);
for(R i=1;i<n;++i){in(a);in(b);link(a,b);}
while(m--){
gc;
switch(ch){
case 'U':in(a);link(u[a],v[a]);break;
case 'C':in(a);in(b);++p;cut(u[p]=a,v[p]=b);break;
case 'Q':in(a);in(b);puts(findroot(a)==findroot(b)?"Yes":"No");
}
}
return 0;
}
洛谷P3950 部落冲突(LCT)的更多相关文章
- 洛谷P3950 部落冲突 [LCT]
题目传送门 部落冲突 格式难调,体面就不放了. 分析: julao们应该都看得出来就是个$LCT$板子,战争就$cut$,结束就$link$,询问就$find$.没了... 太久没打$LCT$,然后发 ...
- 洛谷 P3950 部落冲突 树链剖分
目录 题面 题目链接 题目描述 输入输出格式 输入格式 输出格式 输入输出样例 输入样例1 输出样例1 输入样例2 输出样例2 输入样例3 输出样例3 说明 思路 AC代码 总结 题面 题目链接 P3 ...
- 【刷题】洛谷 P3950 部落冲突
题目背景 在一个叫做Travian的世界里,生活着各个大大小小的部落.其中最为强大的是罗马.高卢和日耳曼.他们之间为了争夺资源和土地,进行了无数次的战斗.期间诞生了众多家喻户晓的英雄人物,也留下了许多 ...
- 洛谷:P3950 部落冲突
原题地址:https://www.luogu.org/problemnew/show/P3950 题目简述 给定一棵树,每次给定一个操作,有如下两种: 将某条边染黑 2.询问给定的u,v两点间是否有边 ...
- [题解] 洛谷P3950 部落冲突
传送门 拿到题目,一看 裸LCT (其实是我懒得打,splay又臭又长) 首先,这道题的意思就是删掉一些边 所以常规操作 点权转边权 之后对于战争操作,在对应的边上+1 对于和平操作,在对应的边上-1 ...
- [洛谷P3950]部落冲突
题目大意:给你一棵树,有$3$个操作: $Q\;p\;q:$询问$p,q$是否连通 $C\;p\;q:$把$p->q$这条边割断 $U\;x:$恢复第$x$次操作二 题解:可以在割断时把这条边赋 ...
- Cogs 2856. [洛谷U14475]部落冲突
2856. [洛谷U14475]部落冲突 ★★★ 输入文件:lct.in 输出文件:lct.out 简单对比时间限制:1 s 内存限制:256 MB [题目描述] 在一个叫做Travi ...
- 洛谷 U14475 部落冲突 【比赛】 【树链剖分 + 线段树】
题目背景 在一个叫做Travian的世界里,生活着各个大大小小的部落.其中最为强大的是罗马.高卢和日耳曼.他们之间为了争夺资源和土地,进行了无数次的战斗.期间诞生了众多家喻户晓的英雄人物,也留下了许多 ...
- lupgu P3950 部落冲突
题目链接 luogu P3950 部落冲突 题解 树剖线段树可以 lct还行 代码 #include<cstdio> #include<algorithm> inline in ...
随机推荐
- 20155206赵飞 Exp1PC平台逆向破解及Bof基础实践
实验一 逆向及Bof基础 1.掌握NOP, JNE, JE, JMP, CMP汇编指令的机器码 NOP汇编指令的机器码是"90" JNE汇编指令的机器码是"75" ...
- 20155218 Exp1 PC平台逆向破解(5)M
20155218 Exp1 PC平台逆向破解(5)M 1. 掌握NOP.JNE.JE.JMP.CMP汇编指令的机器码 NOP:NOP指令即"空指令".执行到NOP指令时,CPU什么 ...
- [BZOJ4842]Delight for a Cat[费用流]
题意 题目链接 分析 类似 最长k可重区间集 一题. 由于本题区间长度相同,首先可以将点的影响看成区间,区间看成点. 先默认所有位置选择事件2,选择区间看做改选事件1 .于是问题变成了求收益最大的方案 ...
- win10+anaconda3+python3.6+opencv3.1.0
最近用windows系统比较多,就想在win10下搞一下深度学习这一方面的研究,那么就需要配置好环境巴拉巴拉的一堆东西.默默记个笔记,正所谓“好记性不如烂笔头”. 1.安装Anaconda 这个是一个 ...
- CommandoVM-虚拟机映像文件 | VM打开直接用
呵呵!自从火眼发布了这个CommandoVM,想必大家应该都挺激动,然而实际操作一下,基本炸裂-- 因为并没有给类似于kali这种直接安装的现成镜像,而是要通过github的脚本去完全网络安装 实际操 ...
- 矩阵分解----Cholesky分解
矩阵分解是将矩阵拆解成多个矩阵的乘积,常见的分解方法有 三角分解法.QR分解法.奇异值分解法.三角分解法是将原方阵分解成一个上三角矩阵和一个下三角矩阵,这种分解方法叫做LU分解法.进一步,如果待分解的 ...
- Serverless架构详解:开发者如何专注于业务代码本身?
本文来自腾讯云技术沙龙,本次沙龙主题为Serverless架构开发与SCF部署实践 演讲嘉宾:黄文俊,曾负责企业级存储.企业级容器平台等产品的架构与开发,目前主要负责SCF腾讯无服务器云函数产品相关. ...
- Apache Ignite 学习笔记(二): Ignite Java Thin Client
前一篇文章,我们介绍了如何安装部署Ignite集群,并且尝试了用REST和SQL客户端连接集群进行了缓存和数据库的操作.现在我们就来写点代码,用Ignite的Java thin client来连接集群 ...
- 科普贴 | 数字钱包MetaMask安装使用详解,活用MetaMask轻松驾驭以太坊
MetaMask 是一款浏览器插件钱包,不需下载安装客户端,只需添加至浏览器扩展程序即可使用,非常方便.它是很多支持 ETH 参投的 ICO 项目推荐使用的钱包之一. 2018年初最火的一个币,应该就 ...
- mgo like的两种写法
实际上都是围绕正则来写的,看大家喜欢那种写法 package main import ( "fmt" "labix.org/v2/mgo" "labi ...