【agc001e】BBQ HARD(动态规划)

题面

atcoder

洛谷

题解

这些agc都是写的整场的题解,现在还是把其中一些题目单独拿出来发

这题可以说非常妙了。

我们可以把这个值看做在网格图上的一点\((-a[i],-b[i])\)走到\((a[j],b[j])\)的方案数。

而网格图走的方案数可以直接递推得到。

那么我们对于每个点把它的坐标取反到第三象限,然后对于整个坐标系计算走到每一个格子的总方案。

把所有\((a[i],b[i])\)的答案累加,再减去自己到自己的方案数,最后除二就是答案了。

#include<iostream>
#include<cstdio>
using namespace std;
#define ll long long
#define MAX 200200
#define MOD 1000000007
void add(int &x,int y){x+=y;if(x>=MOD)x-=MOD;}
const int py=2010;
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int a[MAX],b[MAX],n,ans;
int f[4500][4500];
int inv[9000],jc[9000],jv[9000];
int C(int n,int m){return 1ll*jc[n]*jv[m]%MOD*jv[n-m]%MOD;}
int main()
{
n=read();
for(int i=1;i<=n;++i)a[i]=read(),b[i]=read();
for(int i=1;i<=n;++i)f[py-a[i]][py-b[i]]+=1;
for(int i=1;i<=py*2;++i)
for(int j=1;j<=py*2;++j)
add(f[i][j],f[i-1][j]),add(f[i][j],f[i][j-1]);
inv[0]=inv[1]=jc[0]=jv[0]=1;
for(int i=1;i<py<<2;++i)jc[i]=1ll*jc[i-1]*i%MOD;
for(int i=2;i<py<<2;++i)inv[i]=1ll*inv[MOD%i]*(MOD-MOD/i)%MOD;
for(int i=1;i<py<<2;++i)jv[i]=1ll*jv[i-1]*inv[i]%MOD;
for(int i=1;i<=n;++i)add(ans,f[a[i]+py][b[i]+py]);
for(int i=1;i<=n;++i)add(ans,MOD-C(2*(a[i]+b[i]),2*a[i]));
ans=1ll*ans*inv[2]%MOD;printf("%d\n",ans);
return 0;
}

【agc001e】BBQ HARD(动态规划)的更多相关文章

  1. [Agc001E] BBQ Hard

    [Agc001E] BBQ Hard 题目大意 给定\(n\)对正整数\(a_i,b_i\),求\(\sum_{i=1}^{n-1} \sum_{j=i+1}^n \binom{a_i+b_i+a_j ...

  2. AGC001E BBQ Hard 组合、递推

    传送门 题意:给出长度为$N$的两个正整数序列$A_i,B_i$,求$\sum\limits_{i=1}^N \sum\limits_{j=i+1}^N C_{A_i+A_j+B_i+B_j}^{A_ ...

  3. [agc001E]BBQ Hard[组合数性质+dp]

    Description 传送门 Solution 题目简化后要求的实际上是$\sum _{i=1}^{n-1}\sum _{j=i+1}^{n}C^{A[i]+A[j]}_{A[i]+A[j]+B[i ...

  4. agc001E - BBQ Hard(dp 组合数)

    题意 题目链接 Sol 非常妙的一道题目. 首先,我们可以把\(C_{a_i + b_i + a_j + b_j}^{a_i + a_j}\)看做从\((-a_i, -b_i)\)走到\((a_j, ...

  5. AtCoder AGC001E BBQ Hard (DP、组合计数)

    题目链接: https://atcoder.jp/contests/agc001/tasks/agc001_e 题解: 求\(\sum^n_{i=1}\sum^n_{j=i+1} {A_i+A_j+B ...

  6. [AGC001E]BBQ Hard 组合数学

    题目描述 Snuke is having another barbeque party. This time, he will make one serving of Skewer Meal. He ...

  7. (浙江金华)Day 1 组合数计数

    目录 Day 1 组合计数 1.组合数 (1).C(n,m) 读作n选m,二项式系数 : (2).n个东西里选m个的方案数 不关心选的顺序: (3).二项式系数--->多项式系数: 2.组合数计 ...

  8. NOIp2018模拟赛三十八

    爆〇啦~ A题C题不会写,B题头铁写正解: 随手过拍很自信,出分一看挂成零. 若要问我为什么?gtmdsubtask! 神tm就一个subtask要么0分要么100,结果我预处理少了一点当场去世 难受 ...

  9. 增强学习(三)----- MDP的动态规划解法

    上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值.(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的 ...

随机推荐

  1. Go语言安全编码规范-翻译(分享转发)

    Go语言安全编码规范-翻译 本文翻译原文由:blood_zer0.Lingfighting完成 如果翻译的有问题:联系我(Lzero2012).匆忙翻译肯定会有很多错误,欢迎大家一起讨论Go语言安全能 ...

  2. 浅谈Objeact.clone克隆(纯个人理解,如有错误请指正)

    现在先来看一下jdk给出的Object.clone源码和注释 /** * Creates and returns a copy of this object. The precise meaning ...

  3. 一、InnoDB引擎

    一.InnoDB的历史 MYSQL的5.1版本的时候还是使用旧的innoDB,当时orale公司推出的新的innoDB引擎, 但是需要以插件的形式编译,叫innoDB plugin : 知道MYSQL ...

  4. 未能正确加载包“Microsoft.Data.Entity.Design.Package.MicrosoftDataEntityDesignPackage(转)

    版权声明:作者:jiankunking 出处:http://blog.csdn.net/jiankunking 本文版权归作者和CSDN共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显 ...

  5. 2_C语言中的数据类型 (十)数组

    1          字符串与字符数组 1.1       字符数组定义 char array[100]; 1.2       字符数组初始化 char array[100] = {'a', 'b', ...

  6. C# ConcurrentBag的实现原理

    目录 一.前言 二.ConcurrentBag类 三. ConcurrentBag线程安全实现原理 1. ConcurrentBag的私有字段 2. 用于数据存储的TrehadLocalList类 3 ...

  7. wireshark找不到网卡

    在Capture Opinions中的interface若找不到网卡,一般是npf服务没有启动. npf是什么东东 Netgroup Packet Filter 网络数据包过滤器 NPF Device ...

  8. 如何设计一个异步Web服务——任务调度

    接上一篇<如何设计一个异步Web服务——接口部分> Application已经将任务信息发到了Service服务器中,接下来,Service服务器改如何对自身的资源进行合理分配以满足App ...

  9. kubernetes 网络故障遇见的坑

    1.记录一下自己搭建kubernetes 集群遇见的坑. 过程是我学技术以来最大的bug,处处都是坑,稍微写成一点, 就完全起不来, 起不来之后, 还找不到故障点, 郁闷之极. 后续会慢慢分享给大家. ...

  10. Mac 上flink的安装与启动

    在Mac 上安装flink,需要通过Homebrew安装的 1.howmebrew的安装方式,在终端粘贴以下命令,或者去官网https://brew.sh/index_zh-cn 找到此代码复制粘贴到 ...