【agc001e】BBQ HARD(动态规划)
【agc001e】BBQ HARD(动态规划)
题面
题解
这些agc都是写的整场的题解,现在还是把其中一些题目单独拿出来发
这题可以说非常妙了。
我们可以把这个值看做在网格图上的一点\((-a[i],-b[i])\)走到\((a[j],b[j])\)的方案数。
而网格图走的方案数可以直接递推得到。
那么我们对于每个点把它的坐标取反到第三象限,然后对于整个坐标系计算走到每一个格子的总方案。
把所有\((a[i],b[i])\)的答案累加,再减去自己到自己的方案数,最后除二就是答案了。
#include<iostream>
#include<cstdio>
using namespace std;
#define ll long long
#define MAX 200200
#define MOD 1000000007
void add(int &x,int y){x+=y;if(x>=MOD)x-=MOD;}
const int py=2010;
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int a[MAX],b[MAX],n,ans;
int f[4500][4500];
int inv[9000],jc[9000],jv[9000];
int C(int n,int m){return 1ll*jc[n]*jv[m]%MOD*jv[n-m]%MOD;}
int main()
{
n=read();
for(int i=1;i<=n;++i)a[i]=read(),b[i]=read();
for(int i=1;i<=n;++i)f[py-a[i]][py-b[i]]+=1;
for(int i=1;i<=py*2;++i)
for(int j=1;j<=py*2;++j)
add(f[i][j],f[i-1][j]),add(f[i][j],f[i][j-1]);
inv[0]=inv[1]=jc[0]=jv[0]=1;
for(int i=1;i<py<<2;++i)jc[i]=1ll*jc[i-1]*i%MOD;
for(int i=2;i<py<<2;++i)inv[i]=1ll*inv[MOD%i]*(MOD-MOD/i)%MOD;
for(int i=1;i<py<<2;++i)jv[i]=1ll*jv[i-1]*inv[i]%MOD;
for(int i=1;i<=n;++i)add(ans,f[a[i]+py][b[i]+py]);
for(int i=1;i<=n;++i)add(ans,MOD-C(2*(a[i]+b[i]),2*a[i]));
ans=1ll*ans*inv[2]%MOD;printf("%d\n",ans);
return 0;
}
【agc001e】BBQ HARD(动态规划)的更多相关文章
- [Agc001E] BBQ Hard
[Agc001E] BBQ Hard 题目大意 给定\(n\)对正整数\(a_i,b_i\),求\(\sum_{i=1}^{n-1} \sum_{j=i+1}^n \binom{a_i+b_i+a_j ...
- AGC001E BBQ Hard 组合、递推
传送门 题意:给出长度为$N$的两个正整数序列$A_i,B_i$,求$\sum\limits_{i=1}^N \sum\limits_{j=i+1}^N C_{A_i+A_j+B_i+B_j}^{A_ ...
- [agc001E]BBQ Hard[组合数性质+dp]
Description 传送门 Solution 题目简化后要求的实际上是$\sum _{i=1}^{n-1}\sum _{j=i+1}^{n}C^{A[i]+A[j]}_{A[i]+A[j]+B[i ...
- agc001E - BBQ Hard(dp 组合数)
题意 题目链接 Sol 非常妙的一道题目. 首先,我们可以把\(C_{a_i + b_i + a_j + b_j}^{a_i + a_j}\)看做从\((-a_i, -b_i)\)走到\((a_j, ...
- AtCoder AGC001E BBQ Hard (DP、组合计数)
题目链接: https://atcoder.jp/contests/agc001/tasks/agc001_e 题解: 求\(\sum^n_{i=1}\sum^n_{j=i+1} {A_i+A_j+B ...
- [AGC001E]BBQ Hard 组合数学
题目描述 Snuke is having another barbeque party. This time, he will make one serving of Skewer Meal. He ...
- (浙江金华)Day 1 组合数计数
目录 Day 1 组合计数 1.组合数 (1).C(n,m) 读作n选m,二项式系数 : (2).n个东西里选m个的方案数 不关心选的顺序: (3).二项式系数--->多项式系数: 2.组合数计 ...
- NOIp2018模拟赛三十八
爆〇啦~ A题C题不会写,B题头铁写正解: 随手过拍很自信,出分一看挂成零. 若要问我为什么?gtmdsubtask! 神tm就一个subtask要么0分要么100,结果我预处理少了一点当场去世 难受 ...
- 增强学习(三)----- MDP的动态规划解法
上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值.(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的 ...
随机推荐
- Hbase shell 输入无法使用退格键删除解决办法
今天在进入hbase shell终端进行数据查询和添加时,发现输入的命令无法撤回,现将解决办法写下: 1.使用Ctrl + Backspace或Shift + Backspace组合键删除 2.(Se ...
- 20155333 《网络对抗》 Exp5 MSF基础应用
20155333 <网络对抗> Exp5 MSF基础应用 基础问题回答 用自己的话解释什么是exploit,payload,encode exploit:攻击手段,是能使攻击武器(payl ...
- R语言学习 第二篇:矩阵和数组
向量是一维的,只有行这一个维度,没有其他维度.R可以创建更高维度的数据对象,例如,矩阵.数据框.数组,索引高维度的对象时,需要使用元素的下标.这些对象的下标都使用中括号[]和索引,第一个维度是row, ...
- TICTOC: Header Only C++ Timer
感觉最近的更新频率略高啊-哈哈- 这次的带来的是一个十分简单便利的C++计时库. 项目地址:https://github.com/miaoerduo/tictoc 欢迎Start和提MR. 项目中有详 ...
- vue-router单页应用简单示例(一)
请先完成了项目初始化,具体请看我另一篇博文.vue项目初始化 看一下完成的效果图,很典型的单页应用. .vue后缀名的单文件组件 这里先说一下我对组件的理解.组件,顾名思义就是一组元素组成的一个原 ...
- Asp.Net_Ajax调用WebService返回Json前台获取循环解析
利用JQuery的$.ajax()可以很方便的调用 asp.net的后台方法.但往往从后台返回的json字符串不能够正确解析,究其原因,是因为没有对返回的json数据做进一步的加工.其实,这里只需 要 ...
- strongSwan配置、运行及测试
版本信息:strongSwan v5.7.2 1. 编译 tar xvf strongswan-5.7.2.tar.gz ./configure --prefix=/usr/ --sysco ...
- Algorithms学习笔记-Chapter0序言
0.开篇 <Algorithms>源自Berkeley和UCSD课程讲义,由 Sanjoy Dasgupta / Christos H. Papadimitriou / Umesh V ...
- 在Linux系统中安装caffe
学习深度学习已经很久了,但一直没有自己动手安装过caffe,因为工作需要,需要在linux系统中安装caffe,因此,在这里对安装过程进行记录. caffe配置起来比tensorflow更麻烦一些,我 ...
- FUNMVP:几张图看懂区块链技术到底是什么?(转载)
几张图看懂区块链技术到底是什么? 本文转载自:http://www.cnblogs.com/behindman/p/8873191.html “区块链”的概念可以说是异常火爆,好像互联网金融峰会上没人 ...