描述

在上一回、上上回以及上上上回里我们知道Nettle在玩《艦これ》。经过了一番苦战之后,Nettle又获得了的很多很多的船。
这一天Nettle在检查自己的舰队列表:

我们可以看到,船默认排序是以等级为参数。但实际上一个船的火力值和等级的关系并不大,所以会存在A船比B船等级高,但是A船火力却低于B船这样的情况。比如上图中77级的飞龙改二火力就小于55级的夕立改二。
现在Nettle将按照等级高低的顺序给出所有船的火力值,请你计算出一共有多少对船满足上面提到的这种情况。

提示:火力高才是猛!

输入

第1行:1个整数N。N表示舰船数量, 1≤N≤100,000
第2行:N个整数,第i个数表示等级第i低的船的火力值a[i],1≤a[i]≤2^31-1。

输出

第1行:一个整数,表示有多少对船满足“A船比B船等级高,但是A船火力低于B船”。

样例输入

10
1559614248 709366232 500801802 128741032 1669935692 1993231896 369000208 381379206 962247088 237855491

样例输出

27

解题思路:归并排序是将数列a[l,h]分成两半a[l,mid]和a[mid+1,h]分别进行归并排序,然后再将这两半合并起来。在合并的过程中(设l<=i<=mid,mid+1<=j<=h),当a[i]<=a[j]时,并不产生逆序数;当a[i]>a[j]时,在前半部分中比a[i]大的数都比a[j]大,将a[j]放在a[i]前面的话,逆序数要加上mid+1-i。因此,可以在归并排序中的合并过程中计算逆序数.
注意范围,逆序数最大为n*(n-1)/2,结果用long long保存。
#include <stdio.h>

using namespace std;
const int N = + ; int a[N],tmp[N];
long long ans; void Merge(int l,int m,int r)
{
int i = l;
int j = m + ;
int k = l;
while(i <= m && j <= r)
{
if(a[i] > a[j])
{
tmp[k++] = a[j++];
ans += m - i + ;
}
else
{
tmp[k++] = a[i++];
}
}
while(i <= m) tmp[k++] = a[i++];
while(j <= r) tmp[k++] = a[j++];
for(int i=l;i<=r;i++)
a[i] = tmp[i];
} void Merge_sort(int l,int r)
{
if(l < r)
{
int m = (l + r) >> ;
Merge_sort(l,m);
Merge_sort(m+,r);
Merge(l,m,r);
}
} int main()
{
int n;
//freopen("in.txt","r",stdin);
while(scanf("%d",&n)!=EOF)
{
for(int i=;i<n;i++)
scanf("%d",&a[i]);
ans = ;
Merge_sort(,n-);
printf("%lld\n",ans);
}
return ;
}

【hihocoder】二分·归并排序之逆序对的更多相关文章

  1. 【hihocoder】三十九周:二分.归并排序之逆序对

    就是用归并排序求数组中得逆序对.假设数组为a:[2 4 5],和b:[1 3],那么在这一次归并的时候逆序对这样求,belement表示当前result数组中b数组对应的元素个数,total表示逆序对 ...

  2. hihoCoder#1141 二分·归并排序之逆序对

    原题地址 又是一道WA成狗的题,最后发现原来是结果溢出了.. 代码: #include <iostream> #include <cstring> using namespac ...

  3. 【hiho39】二分·归并排序之逆序对

    近期申请了微软的暑假实习,4号就要在线笔试了,在线測试系统用的是http://hihocoder.com/,今天试手做了一道题. [题目] 原题链接:http://hihocoder.com/cont ...

  4. hihoCoder_二分&#183;归并排序之逆序对

    一.题目 题目1 : 二分·归并排序之逆序对 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描写叙述 在上一回.上上回以及上上上回里我们知道Nettle在玩<艦これ&g ...

  5. 归并排序+归并排序求逆序对(例题P1908)

    归并排序(merge sort) 顾名思义,这是一种排序算法,时间复杂度为O(nlogn),时间复杂度上和快排一样 归并排序是分治思想的应用,我们先将n个数不断地二分,最后得到n个长度为1的区间,显然 ...

  6. 归并排序求逆序对(poj 2299)

    归并排序求逆序对 题目大意 给你多个序列,让你求出每个序列中逆序对的数量. 输入:每组数据以一个数 n 开头,以下n行,每行一个数字,代表这个序列: 输出:对于输出对应该组数据的逆序对的数量: 顺便在 ...

  7. 2014 HDU多校弟五场A题 【归并排序求逆序对】

    这题是2Y,第一次WA贡献给了没有long long 的答案QAQ 题意不难理解,解题方法不难. 先用归并排序求出原串中逆序对的个数然后拿来减去k即可,如果答案小于0,则取0 学习了归并排序求逆序对的 ...

  8. 归并排序&&归并排序求逆序对

    归并排序 归并排序(MERGE-SORT)是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用.将已有序的子序列合并,得到完全有序的序 ...

  9. 【BZOJ4769】超级贞鱼 归并排序求逆序对

    [BZOJ4769]超级贞鱼 Description 马达加斯加贞鱼是一种神奇的双脚贞鱼,它们把自己的智慧写在脚上——每只贞鱼的左脚和右脚上各有一个数.有一天,K只贞鱼兴致来潮,排成一列,从左到右第i ...

随机推荐

  1. python 回溯法 子集树模板 系列 —— 11、全排列

    问题 实现 'a', 'b', 'c', 'd' 四个元素的全排列. 分析 这个问题可以直接套用排列树模板. 不过本文使用子集树模板.分析如下: 一个解x就是n个元素的一种排列,显然,解x的长度是固定 ...

  2. HTML快速入门(一)

    一.HTML 是什么? HTML 指的是超文本标记语言 (Hyper Text Markup Language) HTML 不是一种编程语言,而是一种标记语言 (markup language) 标记 ...

  3. Jmeter(十八)_Ubuntu部署jmeter与ant

    Docker部署接口自动化持续集成环境第三步,容器化Jmeter与ant! 接上文:Docker_容器化jenkins 为了整合接口自动化的持续集成工具,我将jmeter与ant都部署在了Jenkin ...

  4. Jenkins+Maven+SVN+Nexus自动化部署代码实例

    本文接着上篇安装jenkins,安装相关插件,使用我们公司持续集成的测试环境实例进行演示 ========= 完美的分割线 ========== 1.安装jenkins的maven插件 如果要使用je ...

  5. Jenkins 构建运行java程序

    我们将在Jenkins建立执行一个简单的 HelloWorld 应用程序,构建和运行Java程序.打开网址:http://localhost:8080/jenkins 第1步- 转到Jenkins 仪 ...

  6. PAT甲题题解-1096. Consecutive Factors(20)-(枚举)

    题意:一个正整数n可以分解成一系列因子的乘积,其中会存在连续的因子相乘,如630=3*5*6*7,5*6*7即为连续的因子.给定n,让你求最大的连续因子个数,并且输出其中最小的连续序列. 比如一个数可 ...

  7. OpenState: Programming Platform-independent Stateful OpenFlow Applications Inside the Switch

    文章名称:OpenState: Programming Platform-independent Stateful OpenFlow Applications Inside the Switch Op ...

  8. Daily Scrum 10.22

    (写于10.22周四0晨) 昨天任务还未完成的继续完成任务. 每个人都查看自己的TFS,修改已经完成的任务状态,改为已关闭-已完成. 由于android studio运行过于慢,我们统一采取eclip ...

  9. nodeJs 接收请求参数和发送请求参数

    接收请求: request: (1) req.query (2) 导入中间件:var bodyParser = require('body-parser') req.body 响应: response ...

  10. ElasticSearch 2 (7) - 基本概念

    ElasticSearch 2 (7) - 基本概念 摘要 ElasticSearch的一些基本核心概念,理解这些概念有助于ElasticSearch的学习 准实时NRT(Near Realtime) ...