奇怪吸引子---ChenLee
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性、稳定性、吸引性。吸引子是一个数学概念,描写运动的收敛类型。它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出发的非定常流的所有轨道都趋于它,这样的集合有很复杂的几何结构。由于奇怪吸引子与混沌现象密不可分,深入了解吸引子集合的性质,可以揭示出混沌的规律。
这里会展示利用奇怪吸引子生成的艺术图像。奇怪吸引子通常含有三维或四维的数据,而图像是二维的,因此可以从不同的位面将奇怪吸引子投影到二维图像中。
原图及数学公式取自:
http://chaoticatmospheres.com/125670/1204030/gallery/strange-attractors

这里使用自己定义语法的脚本代码生成混沌图像,相关软件参见:YChaos生成混沌图像。如果你对数学生成图形图像感兴趣,欢迎加入QQ交流群: 367752815。
脚本代码:
[ScriptLines]
u=a*i - j*k
v=b*j + i*k
w=c*k + i*j/
i=i+u*t
j=j+v*t
k=k+w*t
x=i
y=j [Variables]
a=5.000000
b=-10.000000
c=-0.380000
i=-1.000000
j=-1.000000
k=-1.000000
t=0.001000
混沌图像:



奇怪吸引子---ChenLee的更多相关文章
- 奇怪吸引子---YuWang
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---WimolBanlue
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---WangSun
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---TreeScrollUnifiedChaoticSystem
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---Thomas
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---ShimizuMorioka
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---Sakarya
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---Russler
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---Rucklidge
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
随机推荐
- 一个ScheduledExecutorService启动的Java线程无故挂掉引发的思考
2018年12月12日18:44:53 一个ScheduledExecutorService启动的Java线程无故挂掉引发的思考 案件现场 不久前,在开发改造公司一个端到端监控日志系统的时候,出现了一 ...
- Linux-C网络编程
简介 基础是TCP/IP协议,网上资料很多不再赘述. 推荐<图解TCP/IP> socket编程 网络字节序 发送主机通常将发送缓冲区中的数据按内存地址从低到高的顺序发出, 接收主机把从网 ...
- ArduinoYun教程之OpenWrt-Yun与CLI配置Arduino Yun
ArduinoYun教程之OpenWrt-Yun与CLI配置Arduino Yun OpenWrt-Yun OpenWrt-Yun是基于OpenWrt的一个Linux发行版.有所耳闻的读者应该听说他是 ...
- [ 转载 ] Java中成员变量 和局部变量
java语言支持的变量类型 类变量:独立于方法之外的变量,用 static 修饰. 局部变量:类的方法中的变量. 实例变量(全局变量):独立于方法之外的变量,不过没有 static 修饰. publi ...
- bzoj3111: [Zjoi2013]蚂蚁寻路
题目链接 bzoj3111: [Zjoi2013]蚂蚁寻路 题解 发现走出来的图是一向上的凸起锯齿状 对于每个突出的矩形dp一下就好了 代码 /* */ #include<cstdio> ...
- 让nginx支持HLS
准备工作: 1.安装nginx和rtmp模块 2.安装ffmepg(用来推流) 以上准备工作参见这篇博客:http://www.cnblogs.com/damiao/p/5231221.html 1. ...
- 项目内部IT/电商/信息化类简报,分享电子版
除了一些国内不准发的内容,还有公司内部项目相关的.其他的大多数资料会在微信公众号推送,分享一下吧,希望大家也能推荐一些好文章. 微信公众号:WallinWind,原创IT类文章在CSDN博客也会同步更 ...
- Groovy中Closure的this到底指向谁?
Groovy in Action(中文版)第136页明确说Closure的this指向Closure自己.并且从代码注释处作者也是这样理解的: class Mother{ int field = ...
- EF Core数据迁移操作
摘要 在开发中,使用EF code first方式开发,那么如果涉及到数据表的变更,该如何做呢?当然如果是新项目,删除数据库,然后重新生成就行了,那么如果是线上的项目,数据库中已经有数据了,那么删除数 ...
- JavaScript:回调模式(Callback Pattern)
函数就是对象,所以他们可以作为一个参数传递给其它函数: 当你将introduceBugs()作为一个参数传递给writeCode(),然后在某个时间点,writeCode()有可能执行(调用)intr ...