BZOJ.1007.[HNOI2008]水平可见直线(凸壳 单调栈)
可以看出我们是要维护一个下凸壳。
先对斜率从小到大排序。斜率最大、最小的直线是一定会保留的,因为这是凸壳最边上的两段。
维护一个单调栈,栈中为当前可见直线(按照斜率排序)。
当加入一条直线l时,可以发现 如果l与栈顶直线l'的交点p在 l'入栈前与栈顶直线 的交点p'的左侧,那么l会覆盖l'(直接用与第一条直线的交点好像也可以?)。弹出l'加入l。
如果p在p'右侧,则保留栈顶直线,并将l入栈;如果重合,那么后加入的直线应该会覆盖l',弹出l'加入l。
在斜率符号改变时结果也是一样的。更新栈的过程应持续到p在p'的右侧。
如果有多条直线斜率相同,截距大的直线会覆盖截距小的直线。排序后过掉即可。
这有图.
//1800kb 160ms
#include <cstdio>
#include <cctype>
#include <algorithm>
#define gc() getchar()
const int N=5e4+5;
int n,sk[N],top,Ans[N];
struct Line{
int k,b,id;
bool operator <(const Line &a)const{
return k==a.k?b>a.b:k<a.k;
}
}l[N];
inline int read()
{
int now=0,f=1;register char c=gc();
for(;!isdigit(c);c=gc()) if(c=='-') f=-1;
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now*f;
}
bool Check(int a,int b,int c){//p(l_a&l_b) is on the left of p'(l_b&l_c)
return 1ll*(l[a].b-l[b].b)*(l[c].k-l[b].k)<=1ll*(l[b].b-l[c].b)*(l[b].k-l[a].k);
}
int main()
{
n=read();
for(int i=1; i<=n; ++i) l[i].k=read(),l[i].b=read(),l[i].id=i;
std::sort(l+1,l+1+n), sk[top=1]=1;
for(int i=2; i<=n; ++i)
{
if(l[i].k==l[i-1].k) continue;
while(top>1 && Check(i,sk[top],sk[top-1])) --top;//x=(b2-b1)/(k1-k2)
sk[++top]=i;
}
for(int i=1; i<=top; ++i) Ans[i]=l[sk[i]].id;
std::sort(Ans+1,Ans+1+top);
for(int i=1; i<=top; ++i) printf("%d ",Ans[i]);
return 0;
}
BZOJ.1007.[HNOI2008]水平可见直线(凸壳 单调栈)的更多相关文章
- BZOJ 1007 [HNOI2008]水平可见直线
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 4453 Solved: 1636[Submit][Sta ...
- bzoj 1007 [HNOI2008]水平可见直线(单调栈)
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 5120 Solved: 1899[Submit][Sta ...
- 2018.07.03 BZOJ 1007: [HNOI2008]水平可见直线(简单计算几何)
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec Memory Limit: 162 MB Description 在xoy直角坐标平面上有n条直线L1,L2,-Ln, ...
- BZOJ 1007 [HNOI2008]水平可见直线 (栈)
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 7940 Solved: 3030[Submit][Sta ...
- BZOJ 1007: [HNOI2008]水平可见直线 栈/计算几何
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec Memory Limit: 162 MB 题目连接 http://www.lydsy.com/JudgeOnline ...
- BZOJ 1007: [HNOI2008]水平可见直线 平面直线
1007: [HNOI2008]水平可见直线 Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则 ...
- bzoj 1007: [HNOI2008]水平可见直线【半平面交】
其实并不算标准半平面交?但是思路差不多 先按照斜率排序,然后用栈维护凸壳,每遇到重斜率或a[i],s[top-1]交点的x轴在s[top],s[top-1]交点左侧,则说明s[top]被a[i],s[ ...
- 【bzoj1007】[HNOI2008]水平可见直线 半平面交/单调栈
题目描述 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.例如,对于直线:L1:y=x; L2:y=- ...
- bzoj 1007: [HNOI2008]水平可见直线 半平面交
题目大意: http://www.lydsy.com/JudgeOnline/problem.php?id=1007; 题解 其实就是求每条直线的上半部分的交 所以做裸半平面交即可 #include ...
随机推荐
- 鸟哥的Linux私房菜——第十八章:磁盘配额quota
视频链接:http://www.bilibili.com/video/av10892470/ 磁盘配额quota的意思是给用户进行使用磁盘额度的空间的划分,举个例子,你的百度网盘的使用空间,其他云盘的 ...
- C语言复习---二维数组和二级指针的关系:没关系,别瞎想(重点)
前提:一维数组和一维指针为什么可以替换使用? ] = { , , }; int *p = a; ; i < ; i++) printf("%d ", *(p + i)); 上 ...
- Codeforces #55D-Beautiful numbers (数位dp)
D. Beautiful numbers time limit per test 4 seconds memory limit per test 256 megabytes input standar ...
- bzoj千题计划253:bzoj2154: Crash的数字表格
http://www.lydsy.com/JudgeOnline/problem.php?id=2154 #include<cstdio> #include<algorithm> ...
- java.uti.Random类nextInt方法中随机数种子为47的奇怪问题
一,问题描述 需要生成一个[0,1]的随机数.即随机生成 0 或者 1.使用java.util.Random类的 nextInt(int)方法,当构造Random类的对象并提供随机数种子时,发现了一个 ...
- Spring: 读取 .properties 文件地址,json转java对象,el使用java类方法相关 (十三)
1. 在Java中获取 .properties 文件的路径 (src/main/resources 下) ProjectName |---src/main/java |---src/main/reso ...
- AngularJs -- 指令中使用子作用域
下面将要介绍的指令会以父级作用域为原型生成子作用域.这种继承的机制可以创建一个隔离层,用来将需要协同工作的方法和数据模型对象放置在一起. ng-app和ng-controller是特殊的指令,因为它们 ...
- 3.微信公众号开发:配置与微信公众平台服务器交互的URL接口地址
微信开发基本原理: 1.首先有3个对象 分别是微信用户端 微信公众平台服务器 开发者服务器(也就是放自己代码的服务器) 三者间互相交互 2.微信公众平台服务器 充当中间者角色 (以被动回复消息为例) ...
- linux命令中which、whereis、locate有什么区别?
1.find find是最常用和最强大的查找命令.它能做到实时查找,精确查找,但速度慢. find的使用格式如下: #find [指定目录] [指定条件] [指定动作] 指定目录:是指所要搜索的目录和 ...
- 【源码阅读】VS调试mimikatz-改造法国神器mimikatz执行就获取明文密码
0x1 概要 记得某位同学提起在XXX得到了一个一键生成明文的工具,觉得很是神奇... 然而我一看图标就知道是mimikatz,这工具是开源的,只要改两行代码就可以实现写死命令了. 顺带讲讲编译过程中 ...