BZOJ.1007.[HNOI2008]水平可见直线(凸壳 单调栈)
可以看出我们是要维护一个下凸壳。
先对斜率从小到大排序。斜率最大、最小的直线是一定会保留的,因为这是凸壳最边上的两段。
维护一个单调栈,栈中为当前可见直线(按照斜率排序)。
当加入一条直线l时,可以发现 如果l与栈顶直线l'的交点p在 l'入栈前与栈顶直线 的交点p'的左侧,那么l会覆盖l'(直接用与第一条直线的交点好像也可以?)。弹出l'加入l。
如果p在p'右侧,则保留栈顶直线,并将l入栈;如果重合,那么后加入的直线应该会覆盖l',弹出l'加入l。
在斜率符号改变时结果也是一样的。更新栈的过程应持续到p在p'的右侧。
如果有多条直线斜率相同,截距大的直线会覆盖截距小的直线。排序后过掉即可。
这有图.
//1800kb 160ms
#include <cstdio>
#include <cctype>
#include <algorithm>
#define gc() getchar()
const int N=5e4+5;
int n,sk[N],top,Ans[N];
struct Line{
int k,b,id;
bool operator <(const Line &a)const{
return k==a.k?b>a.b:k<a.k;
}
}l[N];
inline int read()
{
int now=0,f=1;register char c=gc();
for(;!isdigit(c);c=gc()) if(c=='-') f=-1;
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now*f;
}
bool Check(int a,int b,int c){//p(l_a&l_b) is on the left of p'(l_b&l_c)
return 1ll*(l[a].b-l[b].b)*(l[c].k-l[b].k)<=1ll*(l[b].b-l[c].b)*(l[b].k-l[a].k);
}
int main()
{
n=read();
for(int i=1; i<=n; ++i) l[i].k=read(),l[i].b=read(),l[i].id=i;
std::sort(l+1,l+1+n), sk[top=1]=1;
for(int i=2; i<=n; ++i)
{
if(l[i].k==l[i-1].k) continue;
while(top>1 && Check(i,sk[top],sk[top-1])) --top;//x=(b2-b1)/(k1-k2)
sk[++top]=i;
}
for(int i=1; i<=top; ++i) Ans[i]=l[sk[i]].id;
std::sort(Ans+1,Ans+1+top);
for(int i=1; i<=top; ++i) printf("%d ",Ans[i]);
return 0;
}
BZOJ.1007.[HNOI2008]水平可见直线(凸壳 单调栈)的更多相关文章
- BZOJ 1007 [HNOI2008]水平可见直线
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 4453 Solved: 1636[Submit][Sta ...
- bzoj 1007 [HNOI2008]水平可见直线(单调栈)
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 5120 Solved: 1899[Submit][Sta ...
- 2018.07.03 BZOJ 1007: [HNOI2008]水平可见直线(简单计算几何)
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec Memory Limit: 162 MB Description 在xoy直角坐标平面上有n条直线L1,L2,-Ln, ...
- BZOJ 1007 [HNOI2008]水平可见直线 (栈)
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 7940 Solved: 3030[Submit][Sta ...
- BZOJ 1007: [HNOI2008]水平可见直线 栈/计算几何
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec Memory Limit: 162 MB 题目连接 http://www.lydsy.com/JudgeOnline ...
- BZOJ 1007: [HNOI2008]水平可见直线 平面直线
1007: [HNOI2008]水平可见直线 Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则 ...
- bzoj 1007: [HNOI2008]水平可见直线【半平面交】
其实并不算标准半平面交?但是思路差不多 先按照斜率排序,然后用栈维护凸壳,每遇到重斜率或a[i],s[top-1]交点的x轴在s[top],s[top-1]交点左侧,则说明s[top]被a[i],s[ ...
- 【bzoj1007】[HNOI2008]水平可见直线 半平面交/单调栈
题目描述 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.例如,对于直线:L1:y=x; L2:y=- ...
- bzoj 1007: [HNOI2008]水平可见直线 半平面交
题目大意: http://www.lydsy.com/JudgeOnline/problem.php?id=1007; 题解 其实就是求每条直线的上半部分的交 所以做裸半平面交即可 #include ...
随机推荐
- div中添加滚动条
<div style="position:absolute; height:400px; overflow:auto"></div>div 设置滚动条显示: ...
- windows环境命令行创建虚拟环境
1:安装virtualenv pip install virtualenv 2:创建并激活虚拟环境 #创建虚拟环境 D:\>mkdir xianmu D:\>cd xianmu D:\xi ...
- 【ORACLE】创建表空间
CREATE TABLESPACE dna36 DATAFILE 'D:\oracle\oradata\orcl\dna36.dbf' SIZE 100M AUTOEXTEND ON NEXT 10M ...
- 使用phpstorm+wamp实现php代码实时调试审计
转载自:https://www.bugbank.cn/q/article/5853afaffc0bf4f010ee6ac3.html php调试有N多好用的工具,最近研究到phpstorm配合wamp ...
- 使用/dev/uinput的简要介绍(含demo程序)【转】
转自:https://blog.csdn.net/zhongkunjia/article/details/75142699 uinput机制有2个很大的优点: 1) 不用自己写驱动(比如弄个红外遥控器 ...
- Service Mesh 及其主流开源实现解析(转)
什么是 Service mesh Service Mesh 直译过来是 服务网格,目的是解决系统架构微服务化后的服务间通信和治理问题.服务网格由 sidecar 节点组成.在介绍 service me ...
- (转)substring和substr以及slice和splice的用法和区别
转载地址:https://www.cnblogs.com/echolun/p/7646025.html 那么就由一道笔试题引入吧,已知有字符串a=”get-element-by-id”,写一个func ...
- 阿里云服务器配置nginx和PHP
1. 安装及启动nginx 输入yum install nginx命令进行nginx的安装,当需要确认时输入”y“确认. yum install nginx 安装完成后,输入service nginx ...
- Zookeeper命令行zkCli.sh&zkServer.sh的使用(四)
上篇博文,我们成功的安装和启动了zookeeper服务器,zookeeper还提供了很多方便的功能,方便我们查看服务器的状态,增加,修改,删除数据(入口是zkServer.sh和zkCli.sh).还 ...
- Data Visualization Books
Data Visualization: Principles and Practice