论文地址:《Rich feature hierarchies for accurate object detection and semantic segmentation》

论文包含两个关键:(1)使用CNN处理候选框,以便定位个分割目标。(2)当训练集较小时,有监督的预训练和特点区域的微调。

介绍

目标检测系统总概:(1)输入一张图 。(2)提取候选区域(2k左右)。(3)使用CNN计算每个候选区域的特征。(4)使用class-specific linear SVMs来分类。

使用R-CNN作目标检测

R-CNN由三个模块构成:(1)第一个模块产生候选区域。(2)第二个模块是一个大型的CNN网络,用来从候选区域提取固定长度的特征向量。(3)第三个模块是一组class-specific linear SVMs。

模型设计

候选区域

这里作者用到了“选择性搜索”(selective search),主要思路是根据图像的颜色、纹理、尺寸和空间交叠等参数来把图像分成许多子块,这种方法比穷举法效率更高。具体可以看这里:选择性搜索(selective search) ,Selective Search for Object Detection (C++ / Python)

下面简单的使用代码实现selective search的算法:

#!/usr/bin/env python
'''
Usage:
./ssearch.py input_image (f|q)
f=fast, q=quality
Use "l" to display less rects, 'm' to display more rects, "q" to quit.
''' import sys
import cv2 if __name__ == '__main__':
# If image path and f/q is not passed as command
# line arguments, quit and display help message # speed-up using multithreads
cv2.setUseOptimized(True);
cv2.setNumThreads(); # read image
im = cv2.imread("D:\\tensorflow\\image.jpg")
# resize image
newHeight =
newWidth = int(im.shape[]*/im.shape[])
im = cv2.resize(im, (newWidth, newHeight)) # create Selective Search Segmentation Object using default parameters
ss = cv2.ximgproc.segmentation.createSelectiveSearchSegmentation() # set input image on which we will run segmentation
ss.setBaseImage(im) # Switch to fast but low recall Selective Search method
ss.switchToSelectiveSearchFast()
# Switch to high recall but slow Selective Search method
#ss.switchToSelectiveSearchQuality()
# if argument is neither f nor q print help message # run selective search segmentation on input image
rects = ss.process()
print('Total Number of Region Proposals: {}'.format(len(rects))) # number of region proposals to show
numShowRects =
# increment to increase/decrease total number
# of reason proposals to be shown
increment = while True:
# create a copy of original image
imOut = im.copy() # itereate over all the region proposals
for i, rect in enumerate(rects):
# draw rectangle for region proposal till numShowRects
if (i < numShowRects):
x, y, w, h = rect
cv2.rectangle(imOut, (x, y), (x+w, y+h), (, , ), , cv2.LINE_AA)
else:
break # show output
cv2.imshow("Output", imOut) # record key press
k = cv2.waitKey() & 0xFF # m is pressed
if k == :
# increase total number of rectangles to show by increment
numShowRects += increment
# l is pressed
elif k == and numShowRects > increment:
# decrease total number of rectangles to show by increment
numShowRects -= increment
# q is pressed
elif k == :
break
# close image show window
cv2.destroyAllWindows()

结果如下图:

          

特征提取

使用Caffe实现的CNN来对每个候选区域进行特征提取,每个区域提取4096维的特征向量。使用包含5个卷积层和2个全连接层的CNN对减去均值的、大小为227*227的RGB图像通过前向传播来计算特征。为了使训练数据与CNN(要求输入数据为固定的227*227)匹配,需要对输入图像进行变形。

注:CNN见以下论文:《A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet classification with deep convolutional neural networks. In NIPS, 2012.》

非极大值抑制

使用selective search的快速模式来提取图像的2000多个候选区域,然后对每个候选区域进行变形,通过前向传播在对应的层得到特征。接着,对每一个类,使用针对该类训练过的SVM计算提取到的特征在该类上的分数。这样便得到了一张图的所有区域的Score,接着作者使用一种称为“非极大值抑制”的方法(每个类都是独立处理的)排除一些区域。如下的图像,关于“car”类会得到很多的方框,分类器根据分值从大到小排序:A,B,C,D,E,F。从最大概率的框A开始,判断B-F与之的重合区域,如果大于一个阈值,则丢弃概框。接着,最框B开始(如果B没有被丢弃的话),重复前面的操作。

训练

有监督的预训练

作者先把CNN在一个辅助数据集“ILSVRC 2012”上做了一个预训练(图像进行了分类标注,但没有边框标注),这应该是迁移学习的思想吧。

微调:fine-tuning

为了使CNN可以适用于目标检测任务,假设要检测的物体类别有N类,那么我们就需要把上面预训练阶段的CNN模型的最后一层给替换掉,替换成N+1个输出的神经元(加1,表示还有一个背景),然后这一层直接采用参数随机初始化的方法,其它网络层的参数不变;接着就可以开始继续SGD训练了。开始的时候,SGD学习率选择0.001,在每次训练的时候,我们batch size大小选择  128,其中32个是正样本、96个是负样本。

这里提到一个概念:定位精度评价公式(IOU),该公式定义了两个bounding box的重叠度,作者将IOU>0.5的bounding box判定为正,其余判定为负。

目标分类器

通过实验,得到最佳IOU重叠阈值为0.3。分类器输出的区域的IOU大于0.3的判定为正样本,否则判定为负样本。

作者在这里引入了“Hard negative mining”方法,首先是negative,即负样本,其次是hard,说明是困难样本,也就是说在对负样本分类时候,loss比较大(label与prediction相差较大)的那些样本,也可以说是容易将负样本看成正样本的那些样本,例如ROI里没有物体,全是背景,这时候分类器很容易正确分类成背景,这个就叫easy negative;如果ROI里有二分之一个物体,标签仍是负样本,这时候分类器就容易把他看成正样本,这时候就是had negative。hard negative mining就是多找一些hard negative加入负样本集,进行训练,这样会比easy negative组成的负样本集效果更好。主要体现在虚警率更低一些(也就是false positive少)。

R-CNN阅读笔记的更多相关文章

  1. Gated CNN 阅读笔记

    之前看过TCN,稍微了解了一下语言模型,这篇论文也是对语言模型建模,但是由于对语言模型了解不深,一些常用数据处理方法,训练损失的计算包括残差都没有系统的看过,只是参考网上代码对论文做了粗浅的复现.开学 ...

  2. 《Graph Neural Networks: A Review of Methods and Applications》阅读笔记

    本文是对文献 <Graph Neural Networks: A Review of Methods and Applications> 的内容总结,详细内容请参照原文. 引言 大量的学习 ...

  3. CI框架源码阅读笔记3 全局函数Common.php

    从本篇开始,将深入CI框架的内部,一步步去探索这个框架的实现.结构和设计. Common.php文件定义了一系列的全局函数(一般来说,全局函数具有最高的加载优先权,因此大多数的框架中BootStrap ...

  4. Mongodb Manual阅读笔记:CH4 管理

    4 管理 Mongodb Manual阅读笔记:CH2 Mongodb CRUD 操作Mongodb Manual阅读笔记:CH3 数据模型(Data Models)Mongodb Manual阅读笔 ...

  5. Linux协议栈代码阅读笔记(二)网络接口的配置

    Linux协议栈代码阅读笔记(二)网络接口的配置 (基于linux-2.6.11) (一)用户态通过C库函数ioctl进行网络接口的配置 例如,知名的ifconfig程序,就是通过C库函数sys_io ...

  6. CI框架源代码阅读笔记3 全局函数Common.php

    从本篇開始.将深入CI框架的内部.一步步去探索这个框架的实现.结构和设计. Common.php文件定义了一系列的全局函数(一般来说.全局函数具有最高的载入优先权.因此大多数的框架中BootStrap ...

  7. 《Thinking In Java》阅读笔记

    <Thinking In Java>阅读笔记 前四章:对象导论. 一切都是对象. 操作符. 控制执行流程 public在一个文件中只能有一个,可以是一个类class或者一个接口interf ...

  8. 卷积神经网络(CNN)学习笔记1:基础入门

    卷积神经网络(CNN)学习笔记1:基础入门 Posted on 2016-03-01   |   In Machine Learning  |   9 Comments  |   14935  Vie ...

  9. 论文阅读笔记 Improved Word Representation Learning with Sememes

    论文阅读笔记 Improved Word Representation Learning with Sememes 一句话概括本文工作 使用词汇资源--知网--来提升词嵌入的表征能力,并提出了三种基于 ...

  10. Java Jdk1.8 HashMap源代码阅读笔记二

    三.源代码阅读 3.元素包括containsKey(Object key) /** * Returns <tt>true</tt> if this map contains a ...

随机推荐

  1. PHP生成有背景的二维码图,摘自网络

    有一天产品MM高高兴兴的走过来,兴奋的和我分享她想出来的一个新的idea. 产品MM:你看这个(她指了指她的手机),一脸兴奋 那是一张带着二维码的图片,内容如下: 她接着说:如果我们的分销也能做成类似 ...

  2. mysql安装及错误解决

    #下载mysql源安装包shell> wget http://dev.mysql.com/get/mysql57-community-release-el7-8.noarch.rpm# 安装my ...

  3. anaconda查看删除增加镜像源

    # 查看显示原来的镜像源(base) [jiangshan@localhost ~]$ conda config --showadd_anaconda_token: Trueadd_pip_as_py ...

  4. JAVA框架 Spring AOP--切入点表达式和通知类型

    一:AOP的相关术语: 1)Joinpoint(连接点):所谓的连接点是指那些可以被拦截点,在spring中这些点是指方法.因为在spring中支持方法类型的连接点. 2)Pointcut(切入点): ...

  5. 采用PowerDesigner 设计数据库

    PowerDesigner设计数据库的教程网上都有,最好的是我一位同学写的,地址: 点击这里 我的大致流程如下: 首先要以管理员的身份打开PowerDesigner,如果没这么做,将导致后面无法创建S ...

  6. 20155217《网络对抗》Exp02 后门原理与实践

    20155217<网络对抗>Exp02 后门原理与实践 实验要求 使用netcat获取主机操作Shell,cron启动. 使用socat获取主机操作Shell,任务计划启动. 使用MSF ...

  7. 20155306白皎 《网络对抗》 Exp9 Web安全基础实践

    20155306白皎 <网络对抗> Exp9 Web安全基础实践 一.基本问题回答 SQL注入攻击原理,如何防御 原理是: 就是通过把SQL命令插入到"Web表单递交" ...

  8. 课程设计个人报告——基于ARM实验箱的Android交友软件的设计与实现

    个人贡献 熟悉试验箱各元件功能以及连接组装试验箱 一.实验内容 研究实验箱串口.USB线的调通连接 二.实践步骤 1.打开实验箱,首先了解各元件功能 这个是LTE模块,也叫4G模块,具体的作用是硬件将 ...

  9. # 2017-2018-2 20155319 『网络对抗技术』Exp8:Web基础

    2017-2018-2 20155319 『网络对抗技术』Exp8:Web基础 一.原理与实践说明 1.实践具体要求 (1).Web前端HTML(0.5分) 能正常安装.启停Apache.理解HTML ...

  10. 20155323刘威良《网络对抗》Exp5 MSF基础应用

    20155323刘威良<网络对抗>Exp5 MSF基础应用 实践内容 本实践目标是掌握metasploit的基本应用方式,重点常用的三种攻击方式的思路.具体需要完成: 1.1一个主动攻击实 ...