3306: 树

Time Limit: 10 Sec  Memory Limit: 256 MB
Submit:
792  Solved: 262
[Submit][Status][Discuss]

Description

给定一棵大小为 n 的有根点权树,支持以下操作:

  • 换根
  • 修改点权 
     • 查询子树最小值

Input

  第一行两个整数 n, Q
,分别表示树的大小和操作数。
  接下来n行,每行两个整数f,v,第i+1行的两个数表示点i的父亲和点i的权。保证f < i。如 果f =
0,那么i为根。输入数据保证只有i = 1时,f = 0。
  接下来 m 行,为以下格式中的一种:
  • V x y表示把点x的权改为y

  • E x 表示把有根树的根改为点 x
  • Q x 表示查询点 x 的子树最小值

Output

  对于每个 Q
,输出子树最小值。

Sample Input

3 7
0 1
1 2
1 3
Q
1
V 1 6
Q 1
V 2 5
Q 1
V 3 4
Q 1

Sample Output

1
2
3
4

HINT

  对于 100% 的数据:n, Q ≤ 10^5。

Source

Solution

有道很类似的题目,不过是树链修改

那道题去要树链剖分,而这里只需要线段树维护一下DFS序即可

先以1为根做DFS和建线段树维护dfs序

换根操作只需要讨论一下:

若root=x,那么显然查询全树min

若LCA(root,x)!=x,那么显然毫无影响

若LCA(root,x)==x,那么发现对答案产生了影响,除了x-->root的那个子树,其余都变成了x的子树,那么我们倍增出那个不属于的子树中最接近x的节点,然后统计不包含这棵子树的答案即可

Code

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=; char ch=getchar();
while (ch<'' || ch>'') {if (ch=='-') f=-; ch=getchar();}
while (ch>='' && ch<='') {x=x*+ch-''; ch=getchar();}
return x*f;
}
#define MAXN 100010
int N,Q,val[MAXN];
struct EdgeNode{int next,to;}edge[MAXN<<];
int head[MAXN],cnt;
void AddEdge(int u,int v) {cnt++; edge[cnt].next=head[u]; head[u]=cnt; edge[cnt].to=v;}
void InsertEdge(int u,int v) {if (u==) return; AddEdge(u,v); AddEdge(v,u);}
int pl[MAXN],dfn,pr[MAXN],dfsn[MAXN],deep[MAXN],father[MAXN][],root;
void DFS(int now,int last)
{
pl[now]=++dfn; dfsn[dfn]=now;
for (int i=; i<=; i++)
if (deep[now]>=(<<i))
father[now][i]=father[father[now][i-]][i-];
else
break;
for (int i=head[now]; i; i=edge[i].next)
if (edge[i].to!=last)
{
deep[edge[i].to]=deep[now]+;
father[edge[i].to][]=now;
DFS(edge[i].to,now);
}
pr[now]=dfn;
}
int LCA(int x,int y)
{
if (deep[x]<deep[y]) swap(x,y);
int dd=deep[x]-deep[y];
for (int i=; i<=; i++)
if (dd&(<<i)) x=father[x][i];
for (int i=; i>=; i--)
if (father[x][i]!=father[y][i])
x=father[x][i],y=father[y][i];
if (x==y) return x; else return father[x][];
}
struct SegmentTreeNode{int l,r,minn;}tree[MAXN<<];
inline void Update(int now) {tree[now].minn=min(tree[now<<].minn,tree[now<<|].minn);}
void BuildTree(int now,int l,int r)
{
tree[now].l=l; tree[now].r=r;
if (l==r) {tree[now].minn=val[dfsn[l]]; return;}
int mid=(l+r)>>;
BuildTree(now<<,l,mid);
BuildTree(now<<|,mid+,r);
Update(now);
}
void Change(int now,int pos,int D)
{
int l=tree[now].l,r=tree[now].r;
if (l==r) {tree[now].minn=D; return;}
int mid=(l+r)>>;
if (pos<=mid) Change(now<<,pos,D);
else Change(now<<|,pos,D);
Update(now);
}
int Query(int now,int L,int R)
{
if (R<L) return 0x7fffffff;
int l=tree[now].l,r=tree[now].r;
if (L==l && R==r) return tree[now].minn;
int mid=(l+r)>>,re=0x7fffffff;
if (R<=mid) return Query(now<<,L,R);
else if (L>mid) return Query(now<<|,L,R);
else return min(Query(now<<,L,mid),Query(now<<|,mid+,R));
return re;
}
void ChangeRoot(int x) {root=x;}
int GetAns(int x)
{
int lca=LCA(root,x);
if (x==root) return Query(,,N);
if (pl[x]<=pl[root] && pr[x]>=pr[root])
{
int dd=deep[root]-deep[x]-,y=root;
for (int i=; i<=; i++)
if (dd&(<<i)) y=father[y][i];
return min(Query(,,pl[y]-),Query(,pr[y]+,dfn));
}
return Query(,pl[x],pr[x]);
}
int main()
{
N=read(); Q=read();
for (int fa,i=; i<=N; i++) fa=read(),InsertEdge(fa,i),val[i]=read();
DFS(,); root=;
BuildTree(,,dfn);
while (Q--)
{
char opt[]; scanf("%s",opt+);
int x,y;
switch (opt[])
{
case 'V' : x=read(),y=read(); Change(,pl[x],y); break;
case 'E' : x=read(); ChangeRoot(x); break;
case 'Q' : x=read(); printf("%d\n",GetAns(x)); break;
}
}
return ;
}

【BZOJ-3306】树 线段树 + DFS序的更多相关文章

  1. BZOJ.2434.[NOI2011]阿狸的打字机(AC自动机 树状数组 DFS序)

    题目链接 首先不需要存储每个字符串,可以将所有输入的字符依次存进Trie树,对于每个'P',记录该串结束的位置在哪,以及当前节点对应的是第几个串(当前串即根节点到当前节点):对于'B',只需向上跳一个 ...

  2. 【BZOJ】2434: [Noi2011]阿狸的打字机 AC自动机+树状数组+DFS序

    [题意]阿狸喜欢收藏各种稀奇古怪的东西,最近他淘到一台老式的打字机.打字机上只有28个按键,分别印有26个小写英文字母和'B'.'P'两个字母. 经阿狸研究发现,这个打字机是这样工作的: l 输入小写 ...

  3. luogu SP8093 后缀自动机+树状数组+dfs序

    这题解法很多,简单说几个: 1. 线段树合并,时间复杂度是 $O(nlog^2n)$ 的. 2. 暴力跳 $fail,$ 时间复杂度 $O(n\sqrt n),$ 比较暴力. 3. 建立后缀树后在 $ ...

  4. BZOJ.4184.shallot(线段树分治 线性基)

    BZOJ 裸的线段树分治+线性基,就是跑的巨慢_(:з」∠)_ . 不知道他们都写的什么=-= //41652kb 11920ms #include <map> #include < ...

  5. [BZOJ 4025]二分图(线段树分治+带边权并查集)

    [BZOJ 4025]二分图(线段树分治+带边权并查集) 题面 给出一个n个点m条边的图,每条边会在时间s到t出现,问每个时间的图是否为一个二分图 \(n,m,\max(t_i) \leq 10^5\ ...

  6. BZOJ 4285 使者 (CDQ分治+dfs序)

    题目传送门 题目大意:给你一棵树,有三种操作,在两个点之间连一个传送门,拆毁一个已有的传送门,询问两个点之间的合法路径数量.一条合法路径满足 1.经过且仅经过一个传送门 2.不经过起点终点简单路径上的 ...

  7. 浅谈树套树(线段树套平衡树)&学习笔记

    0XFF 前言 *如果本文有不好的地方,请在下方评论区提出,Qiuly感激不尽! 0X1F 这个东西有啥用? 树套树------线段树套平衡树,可以用于解决待修改区间\(K\)大的问题,当然也可以用 ...

  8. BZOJ 3779 重组病毒 LCT+线段树(维护DFS序)

    原题干(由于是权限题我就直接砸出原题干了,要看题意概述的话在下面): Description 黑客们通过对已有的病毒反编译,将许多不同的病毒重组,并重新编译出了新型的重组病毒.这种病毒的繁殖和变异能力 ...

  9. BZOJ 4034"树上操作"(DFS序+线段树)

    传送门 •题意 有一棵点数为 N 的树,以点 1 为根,且树点有边权. 然后有 M 个操作,分为三种: 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子树中所有点的 ...

随机推荐

  1. STL标准库面试常考知识点

    C++ STL 之所以得到广泛的赞誉,也被很多人使用,不只是提供了像vector, string, list等方便的容器,更重要的是STL封装了许多复杂的数据结构算法和大量常用数据结构操作.vecto ...

  2. SharePoint Foundation 2013 with SP1

    终于支持在 Windows Server 2012 R2 上安装了. 下载 另外,还有一个针对SharePoint Foundation 2013的重要更新.可以在安装SP1之前或之后安装. Micr ...

  3. Hibernate SQL Dialect 方言

    RDBMS Dialect DB2 org.hibernate.dialect.DB2Dialect DB2 AS/400 org.hibernate.dialect.DB2400Dialect DB ...

  4. Kafka是分布式发布-订阅消息系统

    Kafka是分布式发布-订阅消息系统 https://www.biaodianfu.com/kafka.html Kafka是分布式发布-订阅消息系统.它最初由LinkedIn公司开发,之后成为Apa ...

  5. noi题库(noi.openjudge.cn) 1.8编程基础之多维数组T01——T10

    T01 矩阵交换行 描述 给定一个5*5的矩阵(数学上,一个r×c的矩阵是一个由r行c列元素排列成的矩形阵列),将第n行和第m行交换,输出交换后的结果. 输入 输入共6行,前5行为矩阵的每一行元素,元 ...

  6. TinyFrame升级之九:实现复杂的查询

    本章我们主要讲解如何实现一个复杂的查询.由于目前TinyFrame框架已经投入到了实际的项目生产中,所以我很乐意将项目中遇到的任何问题做以记录并备忘. 这章中,我们提到的查询界面如下所示: 其中,涉及 ...

  7. 【AS3】Flash与后台数据交换四种方法整理

    随着Flash Player 9的普及,AS3编程也越来越多了,所以这次重新整理AS3下几种与后台数据交换方法.1.URLLoader(URLStream)2.FlashRemoting3.XMLSo ...

  8. 快速开发之代码生成器(asp.net mvc4 + easyui + knockoutjs)

    一.前言 作为一个码农这么多年,一直在想怎么提高我们的编码效率,关于如何提高编码效率,我自己的几点体会 1.清晰的项目结构,要编写代码的地方集中 2.实现相同功能的代码量少并且清晰易懂 3.重复或有规 ...

  9. js前端的各种面试题

    转载:http://bbs.blueidea.com/thread-3107428-1-1.html 1.截取字符串abcdefg的efg //alert('abcdefg'.substring(4) ...

  10. C# WinForm捕获全局异常

    网上找的C# WinForm全局异常捕获方法,代码如下: static class Program { /// <summary> /// 应用程序的主入口点. /// </summ ...