1391: [Ceoi2008]order

Time Limit: 10 Sec  Memory Limit: 64 MB
Submit:
1334  Solved: 405
[Submit][Status][Discuss]

Description

有N个工作,M种机器,每种机器你可以租或者买过来.
每个工作包括若干道工序,每道工序需要某种机器来完成,你可以通过购买或租用机器来完成。现在给出这些参数,求最大利润

Input

第一行给出 N,M(1<=N<=1200,1<=M<=1200)
下面将有N块数据,每块数据第一行给出完成这个任务能赚到的钱(其在[1,5000])及有多少道工序接下来若干行每行两个数,分别描述完成工序所需要的机器编号及租用它的费用(其在[1,20000])
最后M行,每行给出购买机器的费用(其在[1,20000])

Output

最大利润

Sample Input

2 3
100 2
1 30
2 20
100
2
1 40
3 80
50
80
110

Sample Output

50

HINT

Source

Solution

这玩意叫啥来着?    最大权闭合图?   反正是个裸题

于是正常暴力构图,正确性很显然:

假设任务在S一侧,机器在T一侧。

如果任务A在S割且机器B也在S割,那么割掉的是边B-->T,这代表购买机器的代价。

如果任务A在T割且机器B也在T割,那么割掉的是边S-->A,这代表舍弃任务的代价。

如果任务A在S割但机器B在T割,那么割掉的是边A-->B,这代表租用机器的代价。

Code

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<queue>
using namespace std;
int read()
{
int x=,f=; char ch=getchar();
while (ch<'' || ch>'') {if (ch=='-') f=-; ch=getchar();}
while (ch>='' && ch<='') {x=x*+ch-''; ch=getchar();}
return x*f;
}
#define maxm 3000010
#define maxn 3010
int n,m,tot;
struct EdgeNode{int next,to,cap;}edge[maxm];
int head[maxn],cnt=;
void add(int u,int v,int w) {cnt++; edge[cnt].next=head[u]; head[u]=cnt; edge[cnt].to=v; edge[cnt].cap=w;}
void insert(int u,int v,int w) {add(u,v,w); add(v,u,);}
#define inf 0x7fffffff
int dis[maxn],cur[maxn],S,T;
bool bfs()
{
queue<int>q;
for (int i=S; i<=T; i++) dis[i]=-;
q.push(S); dis[S]=;
while (!q.empty())
{
int now=q.front(); q.pop();
for (int i=head[now]; i; i=edge[i].next)
if (edge[i].cap && dis[edge[i].to]==-)
dis[edge[i].to]=dis[now]+,q.push(edge[i].to);
}
return dis[T]!=-;
}
int dfs(int x,int low)
{
if (x==T) return low;
int used=,w;
for (int i=cur[x]; i; i=edge[i].next)
if (edge[i].cap && dis[edge[i].to]==dis[x]+)
{
w=dfs(edge[i].to,min(edge[i].cap,low-used));
edge[i].cap-=w; edge[i^].cap+=w; used+=w;
if (edge[i].cap) cur[x]=i; if (low==used) return used;
}
if (!used) dis[x]=-;
return used;
}
int dinic()
{
int tmp=;
while (bfs())
{
for (int i=S; i<=T; i++) cur[i]=head[i];
tmp+=dfs(S,inf);
}
return tmp;
}
int main()
{
n=read(),m=read();
S=,T=n+m+;
for (int x,y,i=; i<=n; i++)
{
x=read(),y=read(); tot+=x;
insert(S,i,x);
for (int z,c,j=; j<=y; j++)
z=read(),c=read(),insert(i,z+n,c);
}
for (int x,i=; i<=m; i++) x=read(),insert(i+n,T,x);
printf("%d\n",tot-dinic());
return ;
}

【BZOJ-1391】order 最小割 + 最大全闭合图的更多相关文章

  1. 【BZOJ-3438】小M的作物 最小割 + 最大权闭合图

    3438: 小M的作物 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 825  Solved: 368[Submit][Status][Discuss ...

  2. BZOJ 1391: [Ceoi2008]order [最小割]

    1391: [Ceoi2008]order Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1509  Solved: 460[Submit][Statu ...

  3. 【POJ 2987】Firing (最小割-最大权闭合子图)

    裁员 [问题描述] 在一个公司里,老板发现,手下的员工很多都不务正业,真正干事员工的没几个,于是老板决定大裁员,每开除一个人,同时要将其下属一并开除,如果该下属还有下属,照斩不误.给出每个人的贡献值和 ...

  4. [CEOI2008]order --- 最小割

    [CEOI2008]order 题目描述: 有N个任务,M种机器,每种机器你可以租或者买过来. 每个工作包括若干道工序,每道工序需要某种机器来完成,你可以通过购买或租用机器来完成. 现在给出这些参数, ...

  5. [BZOJ1565][NOI2009]植物大战僵尸-[网络流-最小割+最大点权闭合子图+拓扑排序]

    Description 传送门 Solution em本题知识点是用网络流求最大点权闭合子图. 闭合图定义:图中任何一个点u,若有边u->v,则v必定也在图中. 建图:运用最小割思想,将S向点权 ...

  6. 洛谷 - P1361 - 小M的作物 - 最小割 - 最大权闭合子图

    第一次做最小割,不是很理解. https://www.luogu.org/problemnew/show/P1361 要把东西分进两类里,好像可以应用最小割的模板,其中一类A作为源点,另一类B作为汇点 ...

  7. spoj 839 OPTM - Optimal Marks&&bzoj 2400【最小割】

    因为是异或运算,所以考虑对每一位操作.对于所有已知mark的点,mark的当前位为1则连接(s,i,inf),否则连(i,t,inf),然后其他的边按照原图连(u,v,1),(v,u,1),跑最大流求 ...

  8. [模拟赛FJOI Easy Round #2][T3 skill] (最小割+最大权闭合子图(文理分科模型))

    [题目描述] 天上红绯在游戏中扮演敏剑,对于高攻击低防御的职业来说,爆发力显得非常重要,为此,她准备学习n个技能,每个技能都有2个学习方向:物理攻击和魔法攻击.对于第i个技能,如果选择物理攻击方向,会 ...

  9. bzoj 2229 [Zjoi2011]最小割(分治+最小割)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2229 [题意] 回答若干个关于割不超过x的点对数目的询问. [思路] [最小割最多有n ...

随机推荐

  1. VS XML注释

    1.<c> <c>text</c> 其中: text 希望将其指示为代码的文本. 备注 <c> 标记为您提供了一种将说明中的文本标记为代码的方法.使用 ...

  2. 【HTML5+MVC4】xhEditor网页编辑器图片上传

    准备工作: 创建一个MVC项目中,添加好xhEditor插件 相关用法:http://www.cnblogs.com/xcsn/p/4701497.html 注意事项:xhEditor分为v1.1.1 ...

  3. HP PCS 云监控大数据解决方案

    ——把数据从分散统一集中到数据中心 基于HP分布式并行计算/存储技术构建的云监控系统即是通过“云高清摄像机”及IaaS和PaaS监控系统平台,根据用户所需(SaaS)将多路监控数据流传送给“云端”,除 ...

  4. Tree Traversals

    Tree Traversals 原题链接 常见的二叉树遍历的题目,根据后序遍历和中序遍历求层次遍历. 通过后序遍历和中序遍历建立起一棵二叉树,然后层序遍历一下,主要难点在于树的建立,通过中序遍历和后序 ...

  5. 我在 CSDN 的小窝

    以后有文章,我会同时更新 博客园 和 CSDN. CSDN:http://blog.csdn.net/u010918003

  6. android之自定义广播

    布局文件 点击按钮发送广播 <?xml version="1.0" encoding="utf-8"?> <LinearLayout xmln ...

  7. JavaScript鼠标拖拽特效及相关问题总结

    #div1{width:200px;height:200px;background:red;position:absolute;} #div2{width:200px;height:200px;bac ...

  8. js浏览器窗口

    一.clientwidth和clientheight 注:返回了元素大小,但没有单位,默认单位是 px,如果你强行设置了单位,比如 100em之类,它还是会返回 px的大小. (CSS获取的话,是照着 ...

  9. Ubuntu下安装IDA pro

    预备 由于IDA pro只能装在32位环境下,如果是64位Ubuntu,需要运行如下命令安装32位的必备库. sudo dpkg --add-architecture i386 sudo apt-ge ...

  10. java实现顺序栈

    public class MyStack{ Object[] data; int top; int maxSize; public MyStack(int maxSize) { this.maxSiz ...