【ZOJ】1015 Fishing Net
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=1015
题意:给出一个n个点的无向图,询问是否为弦图,弦图定义为对于图中任意长度>3的环一定存在环上不相邻的点有边相连(n<=1000)
#include <bits/stdc++.h>
using namespace std; const int N=1005;
int n, m, ihead[N], cnt, tag[N], pos[N];
bool vis[N];
struct E { int next, to; }e[N*N];
void add(int u, int v) {
e[++cnt]={ihead[u], v}; ihead[u]=cnt;
e[++cnt]={ihead[v], u}; ihead[v]=cnt;
}
void cln() {
memset(ihead, 0, sizeof(int)*(n+1));
memset(tag, 0, sizeof(int)*(n+1));
memset(pos, 0, sizeof(int)*(n+1));
cnt=0;
}
bool check() {
int x, y, mn, mx;
for(int now=n; now; --now) {
mx=-1; mn=~0u>>1; x=y=0;
for(int i=1; i<=n; ++i) if(!pos[i] && tag[i]>mx) mx=tag[i], x=i;
pos[x]=now;
for(int i=ihead[x]; i; i=e[i].next) if(!pos[e[i].to]) tag[e[i].to]++;
for(int i=ihead[x]; i; i=e[i].next) if(pos[e[i].to]>pos[x] && pos[e[i].to]<mn) mn=pos[e[i].to], y=e[i].to;
for(int i=ihead[y]; i; i=e[i].next) vis[e[i].to]=1; vis[y]=1;
for(int i=ihead[x]; i; i=e[i].next) if(pos[e[i].to]>pos[x] && !vis[e[i].to]) return 0;
for(int i=ihead[y]; i; i=e[i].next) vis[e[i].to]=0; vis[y]=0;
}
return 1;
}
int main() {
while(scanf("%d%d", &n, &m), n&&m) {
int x, y;
for(int i=0; i<m; ++i) { scanf("%d%d", &x, &y); add(x, y); }
check()?puts("Perfect"):puts("Imperfect"); puts("");
cln();
}
return 0;
}
弦图判定裸题= =详细看cdq的论文= =《弦图与区间图》
弦图定义上边说了= =
下面来说一下性质:
团:一个完全图,即团中任意点对都有边相连。
单纯点:如果$x$及其相邻的点组成了一个团,那么$x$就是一个单纯点。
完美消除序列:一个点的序列,每个点出现有且一次,且满足对于任意$v_i$,在$v_{i+1} \cdots v_{n}$的诱导子图中$v_i$是一个单纯点。
定理1:一个弦图至少有一个完美消除序列。(证明看论文)
定理2:弦图的诱导子图也是弦图
所以裸的找完美序列的算法就是每一次找不在完美序列的点试着加入当前维护的完美序列中看是否为一个单纯点,如果是则加入。当然这是裸暴力= =
于是cdq论文介绍了两种算法= =一种是字典序bfs..一种是最大势算法,由于我看网上实现都是最大势算法(mcs算法)= =于是我就学下最大势就ok了..反正两种算法复杂度都是$O(n+m)$
首先mcs的原理是先找出一个序列然后判断这是否为一个完美消除序列。那么mcs算法是如何找出一个序列的呢?
鬼知道!反正貌似这就是一种贪心QAQcdq论文也没有解释QAQ,每一次向完美序列前面加一个点,而每次加入的点是与当前维护序列中的点连边最多的不在序列中的点= =这是什么鬼啊!
所以算法就是每一次找与序列中的点连边最多的不在序列中的点,加入= =
最后判断这个序列是否合法:
如果我们要判断$v_i$这个点,即要在$v_{i+1} \cdots v_{n}$找出与$v_i$相邻的点集$v_{j_1}, v_{j_2}, \cdots v_{j_k}$,且是按在序列的顺序从小到大的顺序。那么我们只需要判断$v_{j_1}$与$v_{j_i}, i>1$是否有边相连即可,如果没有,这个图就不是弦图。因为这是按顺序加入到序列中的,我们又要求这个点集是一个团,那么显然我们只需要判断在序列中最前面的$v_{j_1}$与其它是否相连即可,因为$v_{j_i}, i>1$都已经判断过了= =
在找连边最多的点那一步,是能用链表优化到$O(1)$的,但是我太懒了,直接暴力= =反正本题能过...就算不用$O(1)$的,我们也可以用set = =
【ZOJ】1015 Fishing Net的更多相关文章
- 【ZOJ】4012 Your Bridge is under Attack
[ZOJ]4012 Your Bridge is under Attack 平面上随机n个点,然后给出m条直线,问直线上有几个点 \(n,m \leq 10^{5}\) 由于共线的点不会太多,于是我们 ...
- 【ZOJ】【3329】One Person Game
概率DP/数学期望 kuangbin总结题目中的第三道 看来还是没有进入状态啊……都说是DP了……当然是要找[状态之间的转移关系]了…… 本题中dp[i]跟 dp[i-(k1+k2+k3)] 到dp[ ...
- 【有上下界网络流】【ZOJ】2314 Reactor Cooling
[算法]有上下界网络流-无源汇(循环流) [题解]http://www.cnblogs.com/onioncyc/p/6496532.html //未提交 #include<cstdio> ...
- 【BZOJ】1015: [JSOI2008]星球大战starwar(并查集)
http://www.lydsy.com/JudgeOnline/problem.php?id=1015 看了题解的囧T_T,一开始以为是求割点,但是想到割点不能统计.... 这题用并查集,思想很巧妙 ...
- 【BZOJ】1015: [JSOI2008]星球大战starwar
1015: [JSOI2008]星球大战starwar 题意:一个点数为N(1<= 40w),边数为M(1<=20w)的图,总共删除k个节点,问开始以及每次删除一个节点之后图的连通块数? ...
- 【ZOJ】3785 What day is that day? ——浅谈KMP在ACM竞赛中的暴力打表找规律中的应用
转载请声明出处:http://www.cnblogs.com/kevince/p/3887827.html ——By Kevince 首先声明一下,这里的规律指的是循环,即找到最小循环周期. 这 ...
- 【PAT】1015 德才论 (25)(25 分)
1015 德才论 (25)(25 分) 宋代史学家司马光在<资治通鉴>中有一段著名的“德才论”:“是故才德全尽谓之圣人,才德兼亡谓之愚人,德胜才谓之君子,才胜德谓之小人.凡取人之术,苟不得 ...
- 【ZOJ】3740:Water Level【DP】
Water Level Time Limit: 2 Seconds Memory Limit: 65536 KB Hangzhou is a beautiful city, especial ...
- 【ZOJ】3785 What day is that day? ——KMP 暴力打表找规律
转自:http://www.cnblogs.com/kevince/p/3887827.html 首先声明一下,这里的规律指的是循环,即找到最小循环周期. 这么一说大家心里肯定有数了吧,“不就是nex ...
随机推荐
- GMap.Net开发之在地图上添加多边形
上一篇介绍了在GMap上添加自定义标签(GMapMarker),这篇介绍在GMap上添加多边形(GMapPolyogn),并且介绍如何在地图上画任意的多边形. 如果已经知道了多边形的各个点的位置,就可 ...
- 檢查RAC狀態
1.使用srvctl工具檢查RAC當前配置和狀態 $ srvctl config database -h Displays the configuration for the database. Us ...
- WPF程序最小化到任务通知栏
我们通常使用的桌面软件,都可以最小化到任务通知栏,并且可以从任务通知栏再打开当前软件,或者通过软件的快捷方式从任务通知栏呼出. 我们可以通过下面的方式把WPF程序最小化到任务栏.由于WPF并没有实现N ...
- 【leetcode】Reverse Words in a String
今天第一次在leetcode上提交了一个题目,据说这个网站基本上都是名企面试笔试题,今天无意一进去就看到第一题居然就是昨天的腾讯实习生笔试题,赶紧注册了个账号做题. 题目描述: Given an in ...
- hdu 5288 数学 ****
给一个序列 定义函数f(l ,r) 为区间[l ,r] 中 的数ai不是在这个区间其他任意数aj的倍数 求所有f(l,r)之和 通过预处理,记录 a[i] 的左右边界(所谓的左右边界时 在从 a[i] ...
- ZEALER背后的乐视云视频
ZEALER是我非常喜欢的一个测评网站,经常访问看看手机.电动牙刷及机械键盘的测试视频,非常欣赏王自如的数据化测评理念.敬畏之心,以及不祛痘的视频. 刚好最近对网络视频应用比较感兴趣,觉得ZEALER ...
- 为什么要使用 Node.js
这是一个移动端工程师涉足前端和后端开发的学习笔记,如有错误或理解不到位的地方,万望指正. Node.js 是什么 传统意义上的 JavaScript 运行在浏览器上,这是因为浏览器内核实际上分为两个部 ...
- T-SQL Transact-SQL 编程
T-SQL语句用于管理SQL Server数据库引擎实例,创建和管理数据库对象,以及查询.插入.修改和删除数据. Ø 变量 . 局部变量(Local Variable) 局部变量是用户可以自定义的变量 ...
- LR通过snmp监控linux下的mysql
LR通过snmp监控linux下的mysql 在linux底下安装配置snmp: 1.使用系统盘安装rpm包(这种方式最好) 2.在www.net-snmp.org处下载net-snmp安装(安装后有 ...
- strust.xml
使用strust2框架,实现跳转,请求对应路径 <?xml version="1.0" encoding="UTF-8" ?> <!DOCTY ...