This problem is about a war game between two countries. To protect a base, your country built a defense system called “Tactical Multiple Defense System” (TMD system in short). There are two weapons in the TMD system: Line gun and Circle gun. The Line gun can in one shot destroy all targets whose (two-dimensional) coordinates are on the same ray from the base, and the Circle gun can in one shot destroy all the targets with the same distance to the base. Note that in this game the coordinate of the base is (0, 0).

The other country is going to attack the base of your country. They deploy missiles at some places according to their “National Missile Deployment Plan” (NMD plan). Your spy got the NMD plan and therefore you have the positions of all the missiles, which are the targets you need to destroy. As the commander of the TMD system, your mission is to determine how to destroy all the n missiles by Line gun and Circle gun with minimum number of total shots.

n and Circle gun with minimum number of total shots. The position Pi of a missile is given by three positive integers ri , si , ti which indicates the polar coordinate is (ri , arctan(ti/si)), i.e., the distance from the base to Pi is ri and the slope of the ray from the base and through Pi is ti/si . We shall say that Pi is on the ray of slope ti/si . To use the Line gun, you input two integer parameters t and s, press the fire button, and then it destroys all targets (missiles) on the ray of slope t/s. On the other hand, to use the Circle gun, you need to input a positive integer parameter r, and it can destroy all targets with distance r to the base, that is, it destroys targets exactly on the circle of radius r (but not the ones within the circle). Figure 8 illustrates some examples.

Technical Specification

•The number of missiles n is at most 20000 in each test case. It is possible that two missiles are at the same position.

• The three parameters (ri , si , ti) of each position are integers and satisfy 1000 < ri ≤ 6000 and 1 ≤ si , ti ≤ 10000.

Input

The first line contains an integer T indicating the number of test cases. There are at most 10 test cases. For each test case, the first line is the number of missiles n. Each of the next n lines contains the parameters ri , si , ti of one missile, and two consecutive integers are separated by a space.

Output

For each test case, output in one line the minimum number of shots to destroy all the missiles.

Sample Input

1

5

1010 1 2

1020 2 4

1030 3 6

1030 9 9

1030 9 1

Sample Output

2

思路:

给出n个点距离原点(0,0)的长度ri和在直角坐标系的横纵坐标,有两种方法课一下消灭这些点,1是从原点发出一条一定角度的射线,2是发出一条一定半径的弧线,在这些线上的点都会被消灭,问最少需要多少条线可以将全部点消灭

可以假设任何一个点都经过一条射线和一条弧线,那么所有的点都会成为射线和弧线的交点,题目则转化为需要最少多少条这些线可以将所有的这些点都覆盖,(以线为点,两种线的交点为边建图, 即是求最小嗲覆盖),可以将射线当做x集合,弧线当做y集合,给所有的射线和弧线分别用map标号,再跑一变二分图即可

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <map>
#include <vector>
#include <cstdlib>
using namespace std;
typedef long long ll; const int N = 22222;
int mat[N], vis[N], pos1[N], pos2[N], cnt, n;
vector<int> G[N]; bool Crosspath(int k)
{
int sx = G[k].size();
for(int i = 0; i < sx; ++i)
{
int j = G[k][i];
if(vis[j]) continue;
vis[j] = 1;
if(mat[j] == -1 || Crosspath(mat[j])) {
mat[j] = k;
return true;
}
}
return false;
} void hungary()
{
cnt = 0;
memset(mat, -1, sizeof mat);
for(int i = 1; i < n; ++i)
{
memset(vis, 0, sizeof vis);
if(Crosspath(i)) cnt++;
}
printf("%d\n", cnt);
} int main()
{
int _;
scanf("%d", &_);
while(_ --)
{
scanf("%d", &n);
map<int, int> mp1;
map<double, int> mp2;
mp1.clear();
mp2.clear();
for(int i = 0; i <= n; ++i) G[i].clear();
int num1 = 1, num2 = 1;
int a, b, c;
for(int i = 0; i < n; ++i) {
scanf("%d%d%d", &a, &b, &c);
double deg = c * 1.0 / b;
if(mp2[deg]) pos2[i] = mp2[deg];
else { pos2[i] = num2; mp2[deg] = num2++; } if(mp1[a]) pos1[i] = mp1[a];
else { pos1[i] = num1; mp1[a] = num1++; }
} for(int i = 0; i < n; ++i) {
G[ pos1[i] ].push_back(pos2[i]); }
// cout << num1 << endl;
n = num1;
// for(int i = 0; i < n; ++i) printf("%d ", pos1[i]);
// cout << endl;
// for(int i = 0; i < n; ++i) printf("%d ", pos2[i]);
hungary();
}
}

  

Tactical Multiple Defense System 二分图的更多相关文章

  1. UVALive 7008 Tactical Multiple Defense System

     Tactical Multiple Defense System Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld &a ...

  2. Method and apparatus for providing total and partial store ordering for a memory in multi-processor system

    An improved memory model and implementation is disclosed. The memory model includes a Total Store Or ...

  3. PatentTips - Modified buddy system memory allocation

    BACKGROUND Memory allocation systems assign blocks of memory on request. A memory allocation system ...

  4. General-Purpose Operating System Protection Profile

    1 Protection Profile Introduction   This document defines the security functionality expected to be ...

  5. Uniform synchronization between multiple kernels running on single computer systems

    The present invention allocates resources in a multi-operating system computing system, thereby avoi ...

  6. UNIX标准及实现

    UNIX标准及实现 引言     在UNIX编程环境和C程序设计语言的标准化方面已经做了很多工作.虽然UNIX应用程序在不同的UNIX操作系统版本之间进行移植相当容易,但是20世纪80年代UNIX版本 ...

  7. .NET中RabbitMQ的使用

    概述 MQ全称为Message Queue, 消息队列(MQ)是一种应用程序对应用程序的通信方法.RabbitMQ是一个在AMQP基础上完整的,可复用的企业消息系统.他遵循Mozilla Public ...

  8. POJ 3714 Raid

    Description After successive failures in the battles against the Union, the Empire retreated to its ...

  9. POJ3714 Raid

    Raid Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 10625   Accepted: 3192 Description ...

随机推荐

  1. IOS searchBar去掉背景

    修改UISearchBar的背景颜色 UISearchBar是由两个subView组成的,一个是UISearchBarBackGround,另一个是UITextField. 要IB中没有直接操作背景的 ...

  2. September 20th 2016 Week 39th Tuesday

    Failure is not fatal, but failure to change might be. 失败并不致命,但无法改变却可能是致命的. I need change, but it see ...

  3. 常用js函数整理--common.js

    var h = {}; h.get = function (url, data, ok, error) { $.ajax({ url: url, data: data, dataType: 'json ...

  4. Redis事件管理(一)

    Redis统一的时间管理器,同时管理文件事件和定时器, 这个管理器的定义: #if defined(__APPLE__) #define HAVE_TASKINFO 1 #endif /* Test ...

  5. 如何解决exe4j生成exe文件后弹出提示信息

    使用exe4j生成exe文件时会提示以上一段信息,这个主要是没有注册导致的,在welcome to exe4j的右下角有一个注册信息的地方,去找个注册码,就OK了. 通用注册码:L-g782dn2d- ...

  6. 项目之solr全文搜索工具的安装

    1. Solr简介 Solr是一个基于Lucene的Java搜索引擎服务器.Solr 提供了层面搜索.命中醒目显示并且支持多种输出格式(包括 XML/XSLT 和 JSON 格式).它易于安装和配置, ...

  7. 使用Gson送解析Json格式

    Java bean: package com.jingle.a; public class Person { public String name; public int age; public Pe ...

  8. Quartus 11.0 的AS 下载方式和JTAG下载jic文件的方式

    FPGA下载的三种方式:主动配置方式(AS)和被动配置方式(PS)和最常用的(JTAG)配置方式: AS由FPGA器件引导配置操作过程,它控制着外部存储器和初始化过程,EPCS系列.如EPCS1,EP ...

  9. drozer unknown module处理办法

    将目录切换到drozer安装目录,然后在执行:

  10. 从 Eclipse 迁移至 Android Studio

    从 Eclipse 迁移至 Android Studio 本文内容 Android Studio 基础知识 迁移先决条件 将项目导入 Android Studio 后续步骤 将项目迁移至 Androi ...