Tactical Multiple Defense System 二分图
This problem is about a war game between two countries. To protect a base, your country built a defense system called “Tactical Multiple Defense System” (TMD system in short). There are two weapons in the TMD system: Line gun and Circle gun. The Line gun can in one shot destroy all targets whose (two-dimensional) coordinates are on the same ray from the base, and the Circle gun can in one shot destroy all the targets with the same distance to the base. Note that in this game the coordinate of the base is (0, 0).
The other country is going to attack the base of your country. They deploy missiles at some places according to their “National Missile Deployment Plan” (NMD plan). Your spy got the NMD plan and therefore you have the positions of all the missiles, which are the targets you need to destroy. As the commander of the TMD system, your mission is to determine how to destroy all the n missiles by Line gun and Circle gun with minimum number of total shots.
n and Circle gun with minimum number of total shots. The position Pi of a missile is given by three positive integers ri , si , ti which indicates the polar coordinate is (ri , arctan(ti/si)), i.e., the distance from the base to Pi is ri and the slope of the ray from the base and through Pi is ti/si . We shall say that Pi is on the ray of slope ti/si . To use the Line gun, you input two integer parameters t and s, press the fire button, and then it destroys all targets (missiles) on the ray of slope t/s. On the other hand, to use the Circle gun, you need to input a positive integer parameter r, and it can destroy all targets with distance r to the base, that is, it destroys targets exactly on the circle of radius r (but not the ones within the circle). Figure 8 illustrates some examples.
Technical Specification
•The number of missiles n is at most 20000 in each test case. It is possible that two missiles are at the same position.
• The three parameters (ri , si , ti) of each position are integers and satisfy 1000 < ri ≤ 6000 and 1 ≤ si , ti ≤ 10000.
Input
The first line contains an integer T indicating the number of test cases. There are at most 10 test cases. For each test case, the first line is the number of missiles n. Each of the next n lines contains the parameters ri , si , ti of one missile, and two consecutive integers are separated by a space.
Output
For each test case, output in one line the minimum number of shots to destroy all the missiles.
Sample Input
1
5
1010 1 2
1020 2 4
1030 3 6
1030 9 9
1030 9 1
Sample Output
2
思路:
给出n个点距离原点(0,0)的长度ri和在直角坐标系的横纵坐标,有两种方法课一下消灭这些点,1是从原点发出一条一定角度的射线,2是发出一条一定半径的弧线,在这些线上的点都会被消灭,问最少需要多少条线可以将全部点消灭
可以假设任何一个点都经过一条射线和一条弧线,那么所有的点都会成为射线和弧线的交点,题目则转化为需要最少多少条这些线可以将所有的这些点都覆盖,(以线为点,两种线的交点为边建图, 即是求最小嗲覆盖),可以将射线当做x集合,弧线当做y集合,给所有的射线和弧线分别用map标号,再跑一变二分图即可
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <map>
#include <vector>
#include <cstdlib>
using namespace std;
typedef long long ll; const int N = 22222;
int mat[N], vis[N], pos1[N], pos2[N], cnt, n;
vector<int> G[N]; bool Crosspath(int k)
{
int sx = G[k].size();
for(int i = 0; i < sx; ++i)
{
int j = G[k][i];
if(vis[j]) continue;
vis[j] = 1;
if(mat[j] == -1 || Crosspath(mat[j])) {
mat[j] = k;
return true;
}
}
return false;
} void hungary()
{
cnt = 0;
memset(mat, -1, sizeof mat);
for(int i = 1; i < n; ++i)
{
memset(vis, 0, sizeof vis);
if(Crosspath(i)) cnt++;
}
printf("%d\n", cnt);
} int main()
{
int _;
scanf("%d", &_);
while(_ --)
{
scanf("%d", &n);
map<int, int> mp1;
map<double, int> mp2;
mp1.clear();
mp2.clear();
for(int i = 0; i <= n; ++i) G[i].clear();
int num1 = 1, num2 = 1;
int a, b, c;
for(int i = 0; i < n; ++i) {
scanf("%d%d%d", &a, &b, &c);
double deg = c * 1.0 / b;
if(mp2[deg]) pos2[i] = mp2[deg];
else { pos2[i] = num2; mp2[deg] = num2++; } if(mp1[a]) pos1[i] = mp1[a];
else { pos1[i] = num1; mp1[a] = num1++; }
} for(int i = 0; i < n; ++i) {
G[ pos1[i] ].push_back(pos2[i]); }
// cout << num1 << endl;
n = num1;
// for(int i = 0; i < n; ++i) printf("%d ", pos1[i]);
// cout << endl;
// for(int i = 0; i < n; ++i) printf("%d ", pos2[i]);
hungary();
}
}
Tactical Multiple Defense System 二分图的更多相关文章
- UVALive 7008 Tactical Multiple Defense System
Tactical Multiple Defense System Time Limit:3000MS Memory Limit:0KB 64bit IO Format:%lld &a ...
- Method and apparatus for providing total and partial store ordering for a memory in multi-processor system
An improved memory model and implementation is disclosed. The memory model includes a Total Store Or ...
- PatentTips - Modified buddy system memory allocation
BACKGROUND Memory allocation systems assign blocks of memory on request. A memory allocation system ...
- General-Purpose Operating System Protection Profile
1 Protection Profile Introduction This document defines the security functionality expected to be ...
- Uniform synchronization between multiple kernels running on single computer systems
The present invention allocates resources in a multi-operating system computing system, thereby avoi ...
- UNIX标准及实现
UNIX标准及实现 引言 在UNIX编程环境和C程序设计语言的标准化方面已经做了很多工作.虽然UNIX应用程序在不同的UNIX操作系统版本之间进行移植相当容易,但是20世纪80年代UNIX版本 ...
- .NET中RabbitMQ的使用
概述 MQ全称为Message Queue, 消息队列(MQ)是一种应用程序对应用程序的通信方法.RabbitMQ是一个在AMQP基础上完整的,可复用的企业消息系统.他遵循Mozilla Public ...
- POJ 3714 Raid
Description After successive failures in the battles against the Union, the Empire retreated to its ...
- POJ3714 Raid
Raid Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 10625 Accepted: 3192 Description ...
随机推荐
- asp.net 上一条和下一条记录的显示
这里我用的是input标签跳转页面的: 前台aspx页面中: <input class="btn" id="btnSetForm" type=" ...
- [Android Pro] Android Fragment getActivity返回null解决
overide FragmentActivity onSaveInstanceState method like this. @Override public void onSaveInstance ...
- 指针和引用的区别(c/c++)
http://blog.csdn.net/thisispan/article/details/7456169 ★ 相同点: 1. 都是地址的概念: 指针指向一块内存,它的内容是所指内存的地址:引用 ...
- Java Web进阶——Filter过滤器
一.过滤器的介绍: 在Servlet规范2.3中定义了过滤器,它是一个服务器端的组件,可以截取用户端的请求与响应信息,并且对这些信息进行过滤. Servlet过滤器本身并不生成请求和响应对象,只是提供 ...
- python获取指定星期的日期
- Visual Studio 推荐插件--高量,变量高量,语法高亮
1 WordLight for 2008 下载网址:http://visualstudiogallery.msdn.microsoft.com/ad686131-47d4-4c13-ada2-5b1 ...
- 15.命令模式(Command Pattern)
using System; namespace ConsoleApplication8 { class Program { /// <summary> /// 在软件系统中,“行为请求者” ...
- nexus私有仓库搭建
步骤: 下载安装JDK(注意可用版本) .查看CentOS自带JDK是否已安装,输入: yum list installed |grep java 一般来说,如果是新装CentOS系统的话,不会有JD ...
- android 入门- 词汇
final Resources.Theme theme = context.getTheme(); TypedArray a = theme.obtainStyledAttributes();获得自定 ...
- 【leetcode】Reverse Integer
题目描述: Reverse digits of an integer. Example1: x = 123, return 321Example2: x = -123, return -321 很简单 ...