Tactical Multiple Defense System 二分图
This problem is about a war game between two countries. To protect a base, your country built a defense system called “Tactical Multiple Defense System” (TMD system in short). There are two weapons in the TMD system: Line gun and Circle gun. The Line gun can in one shot destroy all targets whose (two-dimensional) coordinates are on the same ray from the base, and the Circle gun can in one shot destroy all the targets with the same distance to the base. Note that in this game the coordinate of the base is (0, 0).
The other country is going to attack the base of your country. They deploy missiles at some places according to their “National Missile Deployment Plan” (NMD plan). Your spy got the NMD plan and therefore you have the positions of all the missiles, which are the targets you need to destroy. As the commander of the TMD system, your mission is to determine how to destroy all the n missiles by Line gun and Circle gun with minimum number of total shots.
n and Circle gun with minimum number of total shots. The position Pi of a missile is given by three positive integers ri , si , ti which indicates the polar coordinate is (ri , arctan(ti/si)), i.e., the distance from the base to Pi is ri and the slope of the ray from the base and through Pi is ti/si . We shall say that Pi is on the ray of slope ti/si . To use the Line gun, you input two integer parameters t and s, press the fire button, and then it destroys all targets (missiles) on the ray of slope t/s. On the other hand, to use the Circle gun, you need to input a positive integer parameter r, and it can destroy all targets with distance r to the base, that is, it destroys targets exactly on the circle of radius r (but not the ones within the circle). Figure 8 illustrates some examples.
Technical Specification
•The number of missiles n is at most 20000 in each test case. It is possible that two missiles are at the same position.
• The three parameters (ri , si , ti) of each position are integers and satisfy 1000 < ri ≤ 6000 and 1 ≤ si , ti ≤ 10000.
Input
The first line contains an integer T indicating the number of test cases. There are at most 10 test cases. For each test case, the first line is the number of missiles n. Each of the next n lines contains the parameters ri , si , ti of one missile, and two consecutive integers are separated by a space.
Output
For each test case, output in one line the minimum number of shots to destroy all the missiles.
Sample Input
1
5
1010 1 2
1020 2 4
1030 3 6
1030 9 9
1030 9 1
Sample Output
2
思路:
给出n个点距离原点(0,0)的长度ri和在直角坐标系的横纵坐标,有两种方法课一下消灭这些点,1是从原点发出一条一定角度的射线,2是发出一条一定半径的弧线,在这些线上的点都会被消灭,问最少需要多少条线可以将全部点消灭
可以假设任何一个点都经过一条射线和一条弧线,那么所有的点都会成为射线和弧线的交点,题目则转化为需要最少多少条这些线可以将所有的这些点都覆盖,(以线为点,两种线的交点为边建图, 即是求最小嗲覆盖),可以将射线当做x集合,弧线当做y集合,给所有的射线和弧线分别用map标号,再跑一变二分图即可
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <map>
#include <vector>
#include <cstdlib>
using namespace std;
typedef long long ll; const int N = 22222;
int mat[N], vis[N], pos1[N], pos2[N], cnt, n;
vector<int> G[N]; bool Crosspath(int k)
{
int sx = G[k].size();
for(int i = 0; i < sx; ++i)
{
int j = G[k][i];
if(vis[j]) continue;
vis[j] = 1;
if(mat[j] == -1 || Crosspath(mat[j])) {
mat[j] = k;
return true;
}
}
return false;
} void hungary()
{
cnt = 0;
memset(mat, -1, sizeof mat);
for(int i = 1; i < n; ++i)
{
memset(vis, 0, sizeof vis);
if(Crosspath(i)) cnt++;
}
printf("%d\n", cnt);
} int main()
{
int _;
scanf("%d", &_);
while(_ --)
{
scanf("%d", &n);
map<int, int> mp1;
map<double, int> mp2;
mp1.clear();
mp2.clear();
for(int i = 0; i <= n; ++i) G[i].clear();
int num1 = 1, num2 = 1;
int a, b, c;
for(int i = 0; i < n; ++i) {
scanf("%d%d%d", &a, &b, &c);
double deg = c * 1.0 / b;
if(mp2[deg]) pos2[i] = mp2[deg];
else { pos2[i] = num2; mp2[deg] = num2++; } if(mp1[a]) pos1[i] = mp1[a];
else { pos1[i] = num1; mp1[a] = num1++; }
} for(int i = 0; i < n; ++i) {
G[ pos1[i] ].push_back(pos2[i]); }
// cout << num1 << endl;
n = num1;
// for(int i = 0; i < n; ++i) printf("%d ", pos1[i]);
// cout << endl;
// for(int i = 0; i < n; ++i) printf("%d ", pos2[i]);
hungary();
}
}
Tactical Multiple Defense System 二分图的更多相关文章
- UVALive 7008 Tactical Multiple Defense System
Tactical Multiple Defense System Time Limit:3000MS Memory Limit:0KB 64bit IO Format:%lld &a ...
- Method and apparatus for providing total and partial store ordering for a memory in multi-processor system
An improved memory model and implementation is disclosed. The memory model includes a Total Store Or ...
- PatentTips - Modified buddy system memory allocation
BACKGROUND Memory allocation systems assign blocks of memory on request. A memory allocation system ...
- General-Purpose Operating System Protection Profile
1 Protection Profile Introduction This document defines the security functionality expected to be ...
- Uniform synchronization between multiple kernels running on single computer systems
The present invention allocates resources in a multi-operating system computing system, thereby avoi ...
- UNIX标准及实现
UNIX标准及实现 引言 在UNIX编程环境和C程序设计语言的标准化方面已经做了很多工作.虽然UNIX应用程序在不同的UNIX操作系统版本之间进行移植相当容易,但是20世纪80年代UNIX版本 ...
- .NET中RabbitMQ的使用
概述 MQ全称为Message Queue, 消息队列(MQ)是一种应用程序对应用程序的通信方法.RabbitMQ是一个在AMQP基础上完整的,可复用的企业消息系统.他遵循Mozilla Public ...
- POJ 3714 Raid
Description After successive failures in the battles against the Union, the Empire retreated to its ...
- POJ3714 Raid
Raid Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 10625 Accepted: 3192 Description ...
随机推荐
- .Net SqlDbHelper
using System.Configuration; using System.Data.SqlClient; using System.Data; namespace ExamDAL { clas ...
- C#索引器一
索引器允许类或者结构的实例按照与数组相同的方式进行索引取值,索引器与属性类似,不同的是索引器的访问是带参的. 索引器和数组比较: (1)索引器的索引值(Index)类型不受限制 (2)索引器允许重载 ...
- Linux解决关闭终端后终止服务问题
可使用nohup. 具体使用方法,参见:http://zjking.blog.51cto.com/976858/1117828
- 55. Jump Game leetcode
55. Jump Game Total Accepted: 95819 Total Submissions: 330538 Difficulty: Medium Given an array of n ...
- Smarty模板技术学习(二)
本文主要包括以下内容 公共文件引入与继承 内容捕捉 变量调剂器 缓存 Smarty过滤器 数据对象.注册对象 与已有项目结合 公共文件引入与继承 可以把许多模板页面都用到的公共页面放到单独文件里边,通 ...
- java的system.arraycopy()方法
java.lang.System的静态方法arraycopy()可以实现数组的复制,讲课的老师说这个方法效率比较高,如果数组有成千上万个元素,那么用这个方法,比用for语句循环快不少.于是我试了试,发 ...
- hdu 2476 String Painter
第一道区间dp题,感觉题意不是很好理解 题意:一次可以转换某一个位置的字符,或是一串连续的字符,举第一个例子zzzzzfzzzzz 1:aaaaaaaaaaa 2: abbbbbbbbba 3: ab ...
- Python内置的HTTP协议服务器SimpleHTTPServer
[root@ok 6FE5-D831]# python -m SimpleHTTPServer 一条命令,HTTP服务就搭起来了!!! 方便朋友下载,自己的文件!!
- AIX性能监控
http://www.ibm.com/developerworks/cn/aix/library/au-aix7memoryoptimize2/ http://www.aixchina.net/Art ...
- poj 1195:Mobile phones(二维线段树,矩阵求和)
Mobile phones Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 14391 Accepted: 6685 De ...