按边长从小到大排序。。。
再逐个加入(就像MST一样)最先联通的点之间最长路径中的最小值就是新加入的边的长。。。。

Count The Pairs

Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)
Total Submission(s): 266    Accepted Submission(s): 140

Problem Description

  With the 60th anniversary celebration of Nanjing University of Science and Technology coming soon, the university sets n tourist spots to welcome guests. Of course, Redwood forests in our university and its Orychophragmus violaceus must be recommended as top ten tourist spots, probably the best of all. Some undirected roads are made to connect pairs of tourist spots. For example, from Redwood forests (suppose it’s a) to fountain plaza (suppose it’s b), there may exist an undirected road with its length c. By the way, there is m roads totally here. Accidently, these roads’ length is an integer, and all of them are different. Some of these spots can reach directly or indirectly to some other spots. For guests, they are travelling from tourist spot s to tourist spot t, they can achieve some value f. According to the statistics calculated and recorded by us in last years, We found a strange way to calculate the value f:
  From s to t, there may exist lots of different paths, guests will try every one of them. One particular path is consisted of some undirected roads. When they are travelling in this path, they will try to remember the value of longest road in this path. In the end, guests will remember too many longest roads’ value, so he cannot catch them all. But, one thing which guests will keep it in mind is that the minimal number of all these longest values. And value f is exactly the same with the minimal number.
  Tom200 will recommend pairs (s, t) (start spot, end spot points pair) to guests. P guests will come to visit our university, and every one of them has a requirement for value f, satisfying f>=t. Tom200 needs your help. For each requirement, how many pairs (s, t) you can offer?
 

Input
  Multiple cases, end with EOF.
  First line:n m
  n tourist spots ( 1<n<=10000), spots’ index starts from 0.
  m undirected roads ( 1<m<=500000).

Next m lines, 3 integers, a b c
  From tourist spot a to tourist spot b, its length is c. 0<a, b<n, c(0<c<1000000000), all c are different.

Next one line, 1 integer, p (0<p<=100000)
  It means p guests coming.

Next p line, each line one integer, t(0<=t)
  The value t you need to consider to satisfy f>=t.

 

Output
  For each guest's requirement value t, output the number of pairs satisfying f>=t.
  Notice, (1,2), (2,1) are different pairs.
 

Sample Input
2 1
0 1 2
3
1
2
3
3 3
0 1 2
0 2 4
1 2 5
5
0
2
3
4
5
 

Sample Output
2
2
0
6
6
4
4
0
 

Source
 

Recommend
liuyiding
 
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;

struct Edge
{
    int s,t,len;
}E[550000];
int n,m,p,ar[550000],sum[550000];

bool cmp(Edge a,Edge b)
{
    return a.len<b.len;
}

int father[550000],ran[550000];

void Init()
{
    for(int i=0;i<n+10;i++)
    {
        father=i;
        ran=1;
    }
}

int Find(int x)
{
    if(x==father[x]) return x;
    else return  father[father[x]]=Find(father[x]);
}

int Union(int a,int b)
{
    int fa=Find(a),fb=Find(b);
    if(fa==fb) return 0;
    if(ran[fa]<=ran[fb])
    {
        father[fa]=fb;
        int x=ran[fb];
        ran[fb]+=ran[fa];
        return ran[fa]*x;
    }
    else
    {
        father[fb]=fa;
        int x=ran[fa];
        ran[fa]+=ran[fb];
        return ran[fb]*x;
    }
}

int main()
{
    while(scanf("%d%d",&n,&m)!=EOF)
    {
        for(int i=0;i<m;i++)
        {
            scanf("%d%d%d",&E.s,&E.t,&E.len);
        }
        sort(E,E+m,cmp);
        Init();
        for(int i=0;i<m;i++)
        {
            ar=E.len;
            int S=E.s,T=E.t;
            if(i==0)
                sum=Union(S,T);
            else
                sum=sum[i-1]+Union(S,T);
           // printf("NO.%d     %d: %d\n",i,ar,sum);
        }
        scanf("%d",&p);
        while(p--)
        {
            int q;
            scanf("%d",&q);
            int t=lower_bound(ar,ar+m,q)-ar;
          //  cout<<"......"<<t<<endl;
            printf("%d\n",(sum[m-1]-sum[t-1])*2);
        }
    }
    return 0;
}

* This source code was highlighted by YcdoiT. ( style: Codeblocks )

HDOJ 4750 Count The Pairs的更多相关文章

  1. HDU 4750 Count The Pairs (2013南京网络赛1003题,并查集)

    Count The Pairs Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others ...

  2. [2013 ACM/ICPC Asia Regional Nanjing Online C][hdu 4750]Count The Pairs(kruskal + 二分)

    http://acm.hdu.edu.cn/showproblem.php?pid=4750 题意: 定义f(u,v)为u到v每条路径上的最大边的最小值..现在有一些询问..问f(u,v)>=t ...

  3. hdu 4750 Count The Pairs(并查集)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4750 代码: #include<cstdio> #include<cstring&g ...

  4. hdu 4750 Count The Pairs(并查集+二分)

    Problem Description With the 60th anniversary celebration of Nanjing University of Science and Techn ...

  5. 2013南京网赛1003 hdu 4750 Count The Pairs

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4750 题意:给出一个无向图,f(a,b)表示从点a到点b的所有路径中的每条路径的最长边中的最小值,给出 ...

  6. HDU 4750 Count The Pairs(并查集)

    题目链接 没有发现那个点,无奈. #include <cstdio> #include <cstring> #include <cmath> #include &l ...

  7. hdu 4750 Count The Pairs (2013南京网络赛)

    n个点m条无向边的图,对于q个询问,每次查询点对间最小瓶颈路 >=f 的点对有多少. 最小瓶颈路显然在kruskal求得的MST上.而输入保证所有边权唯一,也就是说f[i][j]肯定唯一了. 拿 ...

  8. HDU 4750 Count The Pairs ★(图+并查集+树状数组)

    题意 给定一个无向图(N<=10000, E<=500000),定义f[s,t]表示从s到t经过的每条路径中最长的边的最小值.Q个询问,每个询问一个t,问有多少对(s, t)使得f[s, ...

  9. HDU 4750 Count The Pairs (离线并查集)

    按边从小到大排序. 对于每条边(from, to, dist),如果from和to在同一个集合中,那么这条边无意义,因为之前肯定有比它更小的边连接了from和to. 如果from和to不属于同一个集合 ...

随机推荐

  1. iOS GCD中的dispatch_group

    假如有一组任务,A,B,C,D,其中ABC是可以并行的,D是必须在ABC任务完成后再执行的. (举个场景,比如吃饭前必须先做菜.做饭和买饮料,然后才能开吃) 1.关于ABC的并行: 采用多线程的方式就 ...

  2. UOJ #149 [NOIP 2015] 子串

    传送门 Solution DP+滚动数组. DP状态 \(dp[i][j][k]\): \(A\)的第\(i\)个字符和\(B\)的第\(j\)个字符匹配且该字符在第\(k\)个子串中的方案数. 转移 ...

  3. (译)你应该知道的jQuery小技巧

    帮助提高你jQuery应用的简单小技巧 回到顶部按钮 图片预加载 判断图片是否加载完 自动修补破损图像 Hover切换class类 禁用输入 停止正在加载的链接 toggle fade/slide 简 ...

  4. django models auto_now和auto_now_add的区别

    DataTimeField()中auto_now参数和auto_now_add参数区别: 前者添加或者修改的都为现在的时间,可以再次更新: 后者仅仅为添加时候的时间,不可更改.

  5. 收集的一些jQuery (我平常用的少的,但确实挺有效果的)

    禁用Jquery(动画)效果 jQuery.fx.off = true; 使用自己的 Bullets(这个有一丁点儿的小技巧) //这里是js代码 也就是给每个ul添加一个类名 然后给ul的子li前面 ...

  6. QT 的下载地址

    http://blog.csdn.net/friendan/article/details/44873347

  7. 用arp-scan扫描局域网IP地址

    1,在安装之前需要安装yum install -y libpcap libpcap-devel如果没有安装yum工具需要用rpm安装如下软件包[root@oradba arp-scan-1.8]# y ...

  8. MySQL 随机取数据效率问题

    本文详细解说了MySQL Order By Rand()效率优化的方案,并给出了优化的思路过程,是篇不可多得的MySQL Order By Rand()效率美文. 最近由于需要大概研究了一下MYSQL ...

  9. js内存泄漏

    IE和webkit浏览器都是采用计数来处理垃圾,也就是说每个对象被引用一次,该对象的计数器成员+1,如果计数器为0,那么这个对象被销毁 例如: function A() { var obj = {}; ...

  10. AspnetIdentitySample

    https://github.com/rustd/AspnetIdentitySample http://www.asp.net/web-forms/overview/getting-started/ ...