按边长从小到大排序。。。
再逐个加入(就像MST一样)最先联通的点之间最长路径中的最小值就是新加入的边的长。。。。

Count The Pairs

Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)
Total Submission(s): 266    Accepted Submission(s): 140

Problem Description

  With the 60th anniversary celebration of Nanjing University of Science and Technology coming soon, the university sets n tourist spots to welcome guests. Of course, Redwood forests in our university and its Orychophragmus violaceus must be recommended as top ten tourist spots, probably the best of all. Some undirected roads are made to connect pairs of tourist spots. For example, from Redwood forests (suppose it’s a) to fountain plaza (suppose it’s b), there may exist an undirected road with its length c. By the way, there is m roads totally here. Accidently, these roads’ length is an integer, and all of them are different. Some of these spots can reach directly or indirectly to some other spots. For guests, they are travelling from tourist spot s to tourist spot t, they can achieve some value f. According to the statistics calculated and recorded by us in last years, We found a strange way to calculate the value f:
  From s to t, there may exist lots of different paths, guests will try every one of them. One particular path is consisted of some undirected roads. When they are travelling in this path, they will try to remember the value of longest road in this path. In the end, guests will remember too many longest roads’ value, so he cannot catch them all. But, one thing which guests will keep it in mind is that the minimal number of all these longest values. And value f is exactly the same with the minimal number.
  Tom200 will recommend pairs (s, t) (start spot, end spot points pair) to guests. P guests will come to visit our university, and every one of them has a requirement for value f, satisfying f>=t. Tom200 needs your help. For each requirement, how many pairs (s, t) you can offer?
 

Input
  Multiple cases, end with EOF.
  First line:n m
  n tourist spots ( 1<n<=10000), spots’ index starts from 0.
  m undirected roads ( 1<m<=500000).

Next m lines, 3 integers, a b c
  From tourist spot a to tourist spot b, its length is c. 0<a, b<n, c(0<c<1000000000), all c are different.

Next one line, 1 integer, p (0<p<=100000)
  It means p guests coming.

Next p line, each line one integer, t(0<=t)
  The value t you need to consider to satisfy f>=t.

 

Output
  For each guest's requirement value t, output the number of pairs satisfying f>=t.
  Notice, (1,2), (2,1) are different pairs.
 

Sample Input
2 1
0 1 2
3
1
2
3
3 3
0 1 2
0 2 4
1 2 5
5
0
2
3
4
5
 

Sample Output
2
2
0
6
6
4
4
0
 

Source
 

Recommend
liuyiding
 
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;

struct Edge
{
    int s,t,len;
}E[550000];
int n,m,p,ar[550000],sum[550000];

bool cmp(Edge a,Edge b)
{
    return a.len<b.len;
}

int father[550000],ran[550000];

void Init()
{
    for(int i=0;i<n+10;i++)
    {
        father=i;
        ran=1;
    }
}

int Find(int x)
{
    if(x==father[x]) return x;
    else return  father[father[x]]=Find(father[x]);
}

int Union(int a,int b)
{
    int fa=Find(a),fb=Find(b);
    if(fa==fb) return 0;
    if(ran[fa]<=ran[fb])
    {
        father[fa]=fb;
        int x=ran[fb];
        ran[fb]+=ran[fa];
        return ran[fa]*x;
    }
    else
    {
        father[fb]=fa;
        int x=ran[fa];
        ran[fa]+=ran[fb];
        return ran[fb]*x;
    }
}

int main()
{
    while(scanf("%d%d",&n,&m)!=EOF)
    {
        for(int i=0;i<m;i++)
        {
            scanf("%d%d%d",&E.s,&E.t,&E.len);
        }
        sort(E,E+m,cmp);
        Init();
        for(int i=0;i<m;i++)
        {
            ar=E.len;
            int S=E.s,T=E.t;
            if(i==0)
                sum=Union(S,T);
            else
                sum=sum[i-1]+Union(S,T);
           // printf("NO.%d     %d: %d\n",i,ar,sum);
        }
        scanf("%d",&p);
        while(p--)
        {
            int q;
            scanf("%d",&q);
            int t=lower_bound(ar,ar+m,q)-ar;
          //  cout<<"......"<<t<<endl;
            printf("%d\n",(sum[m-1]-sum[t-1])*2);
        }
    }
    return 0;
}

* This source code was highlighted by YcdoiT. ( style: Codeblocks )

HDOJ 4750 Count The Pairs的更多相关文章

  1. HDU 4750 Count The Pairs (2013南京网络赛1003题,并查集)

    Count The Pairs Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others ...

  2. [2013 ACM/ICPC Asia Regional Nanjing Online C][hdu 4750]Count The Pairs(kruskal + 二分)

    http://acm.hdu.edu.cn/showproblem.php?pid=4750 题意: 定义f(u,v)为u到v每条路径上的最大边的最小值..现在有一些询问..问f(u,v)>=t ...

  3. hdu 4750 Count The Pairs(并查集)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4750 代码: #include<cstdio> #include<cstring&g ...

  4. hdu 4750 Count The Pairs(并查集+二分)

    Problem Description With the 60th anniversary celebration of Nanjing University of Science and Techn ...

  5. 2013南京网赛1003 hdu 4750 Count The Pairs

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4750 题意:给出一个无向图,f(a,b)表示从点a到点b的所有路径中的每条路径的最长边中的最小值,给出 ...

  6. HDU 4750 Count The Pairs(并查集)

    题目链接 没有发现那个点,无奈. #include <cstdio> #include <cstring> #include <cmath> #include &l ...

  7. hdu 4750 Count The Pairs (2013南京网络赛)

    n个点m条无向边的图,对于q个询问,每次查询点对间最小瓶颈路 >=f 的点对有多少. 最小瓶颈路显然在kruskal求得的MST上.而输入保证所有边权唯一,也就是说f[i][j]肯定唯一了. 拿 ...

  8. HDU 4750 Count The Pairs ★(图+并查集+树状数组)

    题意 给定一个无向图(N<=10000, E<=500000),定义f[s,t]表示从s到t经过的每条路径中最长的边的最小值.Q个询问,每个询问一个t,问有多少对(s, t)使得f[s, ...

  9. HDU 4750 Count The Pairs (离线并查集)

    按边从小到大排序. 对于每条边(from, to, dist),如果from和to在同一个集合中,那么这条边无意义,因为之前肯定有比它更小的边连接了from和to. 如果from和to不属于同一个集合 ...

随机推荐

  1. [iOS Xcode注释插件]

    来自onevcat的VVDocumenter-Xcode,地址是:https://github.com/onevcat/VVDocumenter-Xcode 使用方式:按三下"/" ...

  2. [IOS swift对比oc]

    http://www.cocoachina.com/industry/20140605/8686.html WWDC 2014上苹果再次惊世骇俗的推出了新的编程语言Swift 雨燕, 这个消息会前没有 ...

  3. [U3D 导出Xcode工程包,用Xcode给U3D脚本传递参数]

    1.导出Xcode工程 File->Building and setting,导出IOS工程(有错误会失败) 2.运行Xcode工程,在Classes文件夹的UI文件夹里,早到UnityAppC ...

  4. RabbitMQctl命令

    RabbitMQControl RabbitMQ提供了可视化的网页供我们进行一些配置与操作,但是ctl的命令比UI来的专业的多,一些UI无法完成的操作就需要使用ctl命令来进行处理了 这里是官方的文档 ...

  5. Microsoft SQL Server Management Studio ------------------------------ 附加数据库 对于 服务器

    http://zhidao.baidu.com/link?url=didvEEY86Kap_F9PnRAJMGoLXv63IW1fhElfiOpkkmalJ9mvZoqNULlGKcGHN31y_4z ...

  6. 利用mybatis的分页插件实现商品列表的显示

    分析思路: 当我们点击查询商品的时候,会出现商品的列表,并按上下页可以实现分页的查询的功能. 首先首先我们先找到商品查询商品的按钮在jsp的那个页面,即首页index.jsp 这里有个url即显示商品 ...

  7. php操作redis

    redis的操作很多的,以前看到一个比较全的博客,但是现在找不到了.查个东西搜半天,下面整理一下php处理redis的例子,个人觉得常用一些例子.下面的例子都是基于php-redis这个扩展的. 1, ...

  8. string.capwords()函数

    string.capwords()函数 string.capwords()函数,有需要的朋友可以参考下. 代码 : import syssys.path.append("C:/Python2 ...

  9. cx_freeze 把 .py 打包成 .exe

    1.安装 python-3.4.3 默认安装路径 C:\Python34 2.安装 cx_Freeze-4.3.3.win32-py3.4 3.运行 Python Version 3.4 regist ...

  10. RabbitMQ 用户角色详解

    RabbitMQ的用户角色分类:none.management.policymaker.monitoring.administrator RabbitMQ各类角色描述:none不能访问 managem ...