按边长从小到大排序。。。
再逐个加入(就像MST一样)最先联通的点之间最长路径中的最小值就是新加入的边的长。。。。

Count The Pairs

Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)
Total Submission(s): 266    Accepted Submission(s): 140

Problem Description

  With the 60th anniversary celebration of Nanjing University of Science and Technology coming soon, the university sets n tourist spots to welcome guests. Of course, Redwood forests in our university and its Orychophragmus violaceus must be recommended as top ten tourist spots, probably the best of all. Some undirected roads are made to connect pairs of tourist spots. For example, from Redwood forests (suppose it’s a) to fountain plaza (suppose it’s b), there may exist an undirected road with its length c. By the way, there is m roads totally here. Accidently, these roads’ length is an integer, and all of them are different. Some of these spots can reach directly or indirectly to some other spots. For guests, they are travelling from tourist spot s to tourist spot t, they can achieve some value f. According to the statistics calculated and recorded by us in last years, We found a strange way to calculate the value f:
  From s to t, there may exist lots of different paths, guests will try every one of them. One particular path is consisted of some undirected roads. When they are travelling in this path, they will try to remember the value of longest road in this path. In the end, guests will remember too many longest roads’ value, so he cannot catch them all. But, one thing which guests will keep it in mind is that the minimal number of all these longest values. And value f is exactly the same with the minimal number.
  Tom200 will recommend pairs (s, t) (start spot, end spot points pair) to guests. P guests will come to visit our university, and every one of them has a requirement for value f, satisfying f>=t. Tom200 needs your help. For each requirement, how many pairs (s, t) you can offer?
 

Input
  Multiple cases, end with EOF.
  First line:n m
  n tourist spots ( 1<n<=10000), spots’ index starts from 0.
  m undirected roads ( 1<m<=500000).

Next m lines, 3 integers, a b c
  From tourist spot a to tourist spot b, its length is c. 0<a, b<n, c(0<c<1000000000), all c are different.

Next one line, 1 integer, p (0<p<=100000)
  It means p guests coming.

Next p line, each line one integer, t(0<=t)
  The value t you need to consider to satisfy f>=t.

 

Output
  For each guest's requirement value t, output the number of pairs satisfying f>=t.
  Notice, (1,2), (2,1) are different pairs.
 

Sample Input
2 1
0 1 2
3
1
2
3
3 3
0 1 2
0 2 4
1 2 5
5
0
2
3
4
5
 

Sample Output
2
2
0
6
6
4
4
0
 

Source
 

Recommend
liuyiding
 
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;

struct Edge
{
    int s,t,len;
}E[550000];
int n,m,p,ar[550000],sum[550000];

bool cmp(Edge a,Edge b)
{
    return a.len<b.len;
}

int father[550000],ran[550000];

void Init()
{
    for(int i=0;i<n+10;i++)
    {
        father=i;
        ran=1;
    }
}

int Find(int x)
{
    if(x==father[x]) return x;
    else return  father[father[x]]=Find(father[x]);
}

int Union(int a,int b)
{
    int fa=Find(a),fb=Find(b);
    if(fa==fb) return 0;
    if(ran[fa]<=ran[fb])
    {
        father[fa]=fb;
        int x=ran[fb];
        ran[fb]+=ran[fa];
        return ran[fa]*x;
    }
    else
    {
        father[fb]=fa;
        int x=ran[fa];
        ran[fa]+=ran[fb];
        return ran[fb]*x;
    }
}

int main()
{
    while(scanf("%d%d",&n,&m)!=EOF)
    {
        for(int i=0;i<m;i++)
        {
            scanf("%d%d%d",&E.s,&E.t,&E.len);
        }
        sort(E,E+m,cmp);
        Init();
        for(int i=0;i<m;i++)
        {
            ar=E.len;
            int S=E.s,T=E.t;
            if(i==0)
                sum=Union(S,T);
            else
                sum=sum[i-1]+Union(S,T);
           // printf("NO.%d     %d: %d\n",i,ar,sum);
        }
        scanf("%d",&p);
        while(p--)
        {
            int q;
            scanf("%d",&q);
            int t=lower_bound(ar,ar+m,q)-ar;
          //  cout<<"......"<<t<<endl;
            printf("%d\n",(sum[m-1]-sum[t-1])*2);
        }
    }
    return 0;
}

* This source code was highlighted by YcdoiT. ( style: Codeblocks )

HDOJ 4750 Count The Pairs的更多相关文章

  1. HDU 4750 Count The Pairs (2013南京网络赛1003题,并查集)

    Count The Pairs Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others ...

  2. [2013 ACM/ICPC Asia Regional Nanjing Online C][hdu 4750]Count The Pairs(kruskal + 二分)

    http://acm.hdu.edu.cn/showproblem.php?pid=4750 题意: 定义f(u,v)为u到v每条路径上的最大边的最小值..现在有一些询问..问f(u,v)>=t ...

  3. hdu 4750 Count The Pairs(并查集)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4750 代码: #include<cstdio> #include<cstring&g ...

  4. hdu 4750 Count The Pairs(并查集+二分)

    Problem Description With the 60th anniversary celebration of Nanjing University of Science and Techn ...

  5. 2013南京网赛1003 hdu 4750 Count The Pairs

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4750 题意:给出一个无向图,f(a,b)表示从点a到点b的所有路径中的每条路径的最长边中的最小值,给出 ...

  6. HDU 4750 Count The Pairs(并查集)

    题目链接 没有发现那个点,无奈. #include <cstdio> #include <cstring> #include <cmath> #include &l ...

  7. hdu 4750 Count The Pairs (2013南京网络赛)

    n个点m条无向边的图,对于q个询问,每次查询点对间最小瓶颈路 >=f 的点对有多少. 最小瓶颈路显然在kruskal求得的MST上.而输入保证所有边权唯一,也就是说f[i][j]肯定唯一了. 拿 ...

  8. HDU 4750 Count The Pairs ★(图+并查集+树状数组)

    题意 给定一个无向图(N<=10000, E<=500000),定义f[s,t]表示从s到t经过的每条路径中最长的边的最小值.Q个询问,每个询问一个t,问有多少对(s, t)使得f[s, ...

  9. HDU 4750 Count The Pairs (离线并查集)

    按边从小到大排序. 对于每条边(from, to, dist),如果from和to在同一个集合中,那么这条边无意义,因为之前肯定有比它更小的边连接了from和to. 如果from和to不属于同一个集合 ...

随机推荐

  1. Java多线程问题总结

    前言 Java多线程分类中写了21篇多线程的文章,21篇文章的内容很多,个人认为,学习,内容越多.越杂的知识,越需要进行深刻的总结,这样才能记忆深刻,将知识变成自己的.这篇文章主要是对多线程的问题进行 ...

  2. JAVA线程池的分析和使用

    1. 引言 合理利用线程池能够带来三个好处.第一:降低资源消耗.通过重复利用已创建的线程降低线程创建和销毁造成的消耗.第二:提高响应速度.当任务到达时,任务可以不需要等到线程创建就能立即执行.第三:提 ...

  3. WPF中ListBox控件在选择模式(SelectionMode)为Single时仍然出现多个Item被选中的问题

    最近在学习WPF过程中使用到了ListBox控件,在使用时遇到下面的奇怪问题: 代码如下: listBox.Items.Add("绘图"); listBox.Items.Add(& ...

  4. K米APP案例分析

    关于 K米 -- 的案例分析 产品 K米的APP (全国KTV点歌,手机直播,互动,交友,预订)的Android客户端 第一部分 调研,评测 评测: 软件的bug,功能评测,黑箱测试 • 下载并使用, ...

  5. NOIp 0910 爆零记

    这套题是神犇chty出的. 刚拿到题的时候有点懵逼,因为按照一般的套路第一题都是一眼题,但是看到第一题后想了很多个算法和数据结构好像都不能很好的解决.然后就随手敲了个暴力去看T2. 嗯...文件名是b ...

  6. JavaWeb---总结(十七)JSP中的九个内置对象

    一.JSP运行原理 每个JSP 页面在第一次被访问时,WEB容器都会把请求交给JSP引擎(即一个Java程序)去处理.JSP引擎先将JSP翻译成一个_jspServlet(实质上也是一个servlet ...

  7. 【原】CSS3 Media在常用设备的设置值

    摘要:今天的一个小小的项目中,在各种手机上样式都显示正常,唯独iphone4s的有些许问题.产品经理又说iphone4s用户还挺多的,无奈,只能查一查iphone4s的media值,顺便做个小小总结; ...

  8. Jint .net平台的javascript引擎

    使用需求 有时候一段Javascript代码写的很棒,而我们又无法将之翻译成.net或翻译之成本很高的时候 我们就可以使用Jint引擎来运行Javascript代码,来得到我们想要的结果 或者上 ht ...

  9. yum提示another app is currently holding the yum lock;waiting for it to exit

    Another app 解决方法:rm -rf /var/run/yum.pid 来强行解除锁定,然后你的yum就可以运行了

  10. vim的使用

    vim的定位 home:光标移到行首 end:光标移到行尾 pageup:屏幕上翻页 pagedow:屏幕下翻页 shift+g:定位行  如转至10行   10shift+g shift+gg 转至 ...