【洛谷 P2604】 [ZJOI2010]网络扩容(最大流,费用流)
题目链接
第一问就是简单的最大流。
第二问,保留第一问求完最大流的残量网络。
然后新建一个源点,向原源点连一条流量为k,费用为0的边。
然后所有边重新连一起(原来的边保留),费用为题目所给,最小费用即为第二问答案,很好理解。
#include <cstdio>
#include <queue>
#include <cstring>
#define INF 2147483647
using namespace std;
const int MAXN = 1010;
const int MAXM = 20010;
struct Edge{
int from, next, to, rest, cost;
}e[MAXM];
int head[MAXN], num = 1, n, m, k;
inline void Add(int from, int to, int flow, int cost){
e[++num] = (Edge){from, head[from], to, flow, cost}; head[from] = num;
e[++num] = (Edge){to, head[to], from, 0, -cost}; head[to] = num;
}
int s, t, a[MAXM], b[MAXM], c[MAXM], d[MAXM], now, maxflow, mincost;
queue <int> q;
int v[MAXN], dis[MAXN], pre[MAXN], flow[MAXN];
int re(){
q.push(s);
memset(dis, 127, sizeof dis);
memset(flow, 0, sizeof flow);
dis[s] = 0; pre[t] = 0; flow[s] = INF;
while(q.size()){
now = q.front(); q.pop(); v[now] = 0;
for(int i = head[now]; i; i = e[i].next)
if(e[i].rest && dis[e[i].to] > dis[now] + e[i].cost){
dis[e[i].to] = dis[now] + e[i].cost;
pre[e[i].to] = i; flow[e[i].to] = min(flow[now], e[i].rest);
if(!v[e[i].to]) v[e[i].to] = 1, q.push(e[i].to);
}
}
return pre[t];
}
int main(){
scanf("%d%d%d", &n, &m, &k); s = 1; t = n;
for(int i = 1; i <= m; ++i){
scanf("%d%d%d%d", &a[i], &b[i], &c[i], &d[i]);
Add(a[i], b[i], c[i], 0);
}
while(re()){
now = pre[t];
while(now){
e[now].rest -= flow[t];
e[now ^ 1].rest += flow[t];
now = pre[e[now].from];
}
maxflow += flow[t];
}
printf("%d ", maxflow);
s = 0; Add(s, 1, k, 0);
for(int i = 1; i <= m; ++i)
Add(a[i], b[i], INF, d[i]);
while(re()){
now = pre[t];
while(now){
e[now].rest -= flow[t];
e[now ^ 1].rest += flow[t];
mincost += e[now].cost * flow[t];
now = pre[e[now].from];
}
}
printf("%d\n", mincost);
return 0;
}
【洛谷 P2604】 [ZJOI2010]网络扩容(最大流,费用流)的更多相关文章
- 洛谷 P2604 [ZJOI2010]网络扩容 解题报告
P2604 [ZJOI2010]网络扩容 题目描述 给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是指将容量扩大1所需的费用.求: 1. 在不扩容的情况下,1到N的最大流: 2. ...
- [洛谷P2604][ZJOI2010]网络扩容
题目大意:给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是指将容量扩大1所需的费用. 求: 1.在不扩容的情况下,1到N的最大流: 2.将1到N的最大流增加K所需的最小费用. 题解 ...
- 洛谷$P2604\ [ZJOI2010]$网络扩容 网络流
正解:网络流 解题报告: 传送门$QwQ$ 昂第一问跑个最大流就成不说$QwQ$ 然后第二问,首先原来剩下的边就成了费用为0的边?然后原来的所有边连接的两点都给加上流量为$inf$费用为$w$的边,保 ...
- 洛谷 P2604 [ZJOI2010]网络扩容
题目描述 给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是指将容量扩大1所需的费用.求: 1. 在不扩容的情况下,1到N的最大流: 2. 将1到N的最大流增加K所需的最小扩容费用. ...
- 【题解】Luogu P2604 [ZJOI2010]网络扩容
原题传送门:P2604 [ZJOI2010]网络扩容 这题可以说是板题 给你一个图,先让你求最大流 再告诉你,每条边可以花费一些代价,使得流量加一 问至少花费多少代价才能使最大流达到k 解法十分简单 ...
- BZOJ 1834 Luogu P2604 [ZJOI2010]网络扩容 (最小费用最大流)
题目连接: (luogu) https://www.luogu.org/problemnew/show/P2604 (bzoj) https://www.lydsy.com/JudgeOnline/p ...
- P2604 [ZJOI2010]网络扩容
思路 简单的费用流问题,跑出第一问后在残量网络上加边求最小费用即可 代码 #include <cstdio> #include <algorithm> #include < ...
- 【洛谷 P1251】 餐巾计划问题 (费用流)
题目链接 我做的网络流24题里的第一题.. 想是不可能想到的,只能看题解. 首先,我们拆点,将一天拆成晚上和早上,每天晚上会受到脏餐巾(来源:当天早上用完的餐巾,在这道题中可理解为从原点获得),每天早 ...
- 洛谷 P2045 方格取数加强版【费用流】
题目链接:https://www.luogu.org/problemnew/show/P2045 题目描述 给出一个n*n的矩阵,每一格有一个非负整数Aij,(Aij <= 1000)现 ...
- 洛谷P2604 网络扩容 拆点+费用流
原题链接 这题貌似比较水吧,最简单的拆点,直接上代码了. #include <bits/stdc++.h> using namespace std; #define N 1000 #def ...
随机推荐
- 解决zabbix使用中文是出现乱码的问题
解决zabbix使用中文是出现乱码的问题 ①:上传windows的simhei.ttf字体到zabbix服务器的/usr/share/zabbix/fonts/目录下 ②:编辑/usr/sh ...
- Vue于React特性对比(二)
一,关于响应式数据更新方式的实现 1)只有在data里面定义的数据才会有响应式更新 vue依赖的defineProperty的数据劫持加上依赖数据,实现数据的响应式更新.可以称之为依赖式的响应.因为依 ...
- IDEA设置头注释—自定义author和date
IDEA设置头注释,自定义author和date的方法如下所示: 去掉波浪线的方式:鼠标选中单词 --> 点击鼠标右键 --> spelling --> save 'xxx' to ...
- linux的一些机制Signal, Fork,
signal(SIGCHLD, SignalHandler); 注册软中断,对应的api close(socket); ret=fork(): 父进程,返回子进程的pid. 子进程返回0, 出错返回& ...
- 【bzoj3796】Mushroom追妹纸 Kmp+二分+Hash
题目描述 给出字符串s1.s2.s3,找出一个字符串w,满足: 1.w是s1的子串: 2.w是s2的子串: 3.s3不是w的子串. 4.w的长度应尽可能大 求w的最大长度. 输入 输入有三行,第一行为 ...
- 【Java】判断字符串是否包含子字符串
JAVA里面判断: public static void main(String[] args) { String str="ABC_001"; if(str.indexOf(&q ...
- 【题解】APIO2014回文串
哇哦~想不到我有生之年竟然能够做出字符串的题目ヾ(✿゚▽゚)ノ虽然这题比较裸但依然灰常开心! 首先有一个棒棒的性质:本质不同的回文串最多有 O(n) 个.首先 manacher 把它们都找出来,然后问 ...
- mysql数据库的存储过程
一. 什么是存储过程: 存储过程是一组可编程的函数,是为了完成特定功能的SQL语句集,经过第一次编译后再次调用不需要再次编译,创建并保存在数据库中,用户可通过指定存储过程的名字并给定参数(需要时)来调 ...
- Opencv2.4.9+win7+VS2012一次性配置的方法--通过建立属性表永久配置
Opencv的配置对于初学者很麻烦,网上的教程也非常多,针对不同的操作系统.opencv版本.Visual studio版本都有相应的教程,但即便是按照教程一步一步来,仍然难免出错,很多教程还是一次性 ...
- bzoj1016: [JSOI2008]最小生成树计数(kruskal+dfs)
一直以为这题要martix-tree,实际上因为有相同权值的边不大于10条于是dfs就好了... 先用kruskal求出每种权值的边要选的次数num,然后对于每种权值的边2^num暴搜一下选择的情况算 ...