【洛谷 P2604】 [ZJOI2010]网络扩容(最大流,费用流)
题目链接
第一问就是简单的最大流。
第二问,保留第一问求完最大流的残量网络。
然后新建一个源点,向原源点连一条流量为k,费用为0的边。
然后所有边重新连一起(原来的边保留),费用为题目所给,最小费用即为第二问答案,很好理解。
#include <cstdio>
#include <queue>
#include <cstring>
#define INF 2147483647
using namespace std;
const int MAXN = 1010;
const int MAXM = 20010;
struct Edge{
int from, next, to, rest, cost;
}e[MAXM];
int head[MAXN], num = 1, n, m, k;
inline void Add(int from, int to, int flow, int cost){
e[++num] = (Edge){from, head[from], to, flow, cost}; head[from] = num;
e[++num] = (Edge){to, head[to], from, 0, -cost}; head[to] = num;
}
int s, t, a[MAXM], b[MAXM], c[MAXM], d[MAXM], now, maxflow, mincost;
queue <int> q;
int v[MAXN], dis[MAXN], pre[MAXN], flow[MAXN];
int re(){
q.push(s);
memset(dis, 127, sizeof dis);
memset(flow, 0, sizeof flow);
dis[s] = 0; pre[t] = 0; flow[s] = INF;
while(q.size()){
now = q.front(); q.pop(); v[now] = 0;
for(int i = head[now]; i; i = e[i].next)
if(e[i].rest && dis[e[i].to] > dis[now] + e[i].cost){
dis[e[i].to] = dis[now] + e[i].cost;
pre[e[i].to] = i; flow[e[i].to] = min(flow[now], e[i].rest);
if(!v[e[i].to]) v[e[i].to] = 1, q.push(e[i].to);
}
}
return pre[t];
}
int main(){
scanf("%d%d%d", &n, &m, &k); s = 1; t = n;
for(int i = 1; i <= m; ++i){
scanf("%d%d%d%d", &a[i], &b[i], &c[i], &d[i]);
Add(a[i], b[i], c[i], 0);
}
while(re()){
now = pre[t];
while(now){
e[now].rest -= flow[t];
e[now ^ 1].rest += flow[t];
now = pre[e[now].from];
}
maxflow += flow[t];
}
printf("%d ", maxflow);
s = 0; Add(s, 1, k, 0);
for(int i = 1; i <= m; ++i)
Add(a[i], b[i], INF, d[i]);
while(re()){
now = pre[t];
while(now){
e[now].rest -= flow[t];
e[now ^ 1].rest += flow[t];
mincost += e[now].cost * flow[t];
now = pre[e[now].from];
}
}
printf("%d\n", mincost);
return 0;
}
【洛谷 P2604】 [ZJOI2010]网络扩容(最大流,费用流)的更多相关文章
- 洛谷 P2604 [ZJOI2010]网络扩容 解题报告
P2604 [ZJOI2010]网络扩容 题目描述 给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是指将容量扩大1所需的费用.求: 1. 在不扩容的情况下,1到N的最大流: 2. ...
- [洛谷P2604][ZJOI2010]网络扩容
题目大意:给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是指将容量扩大1所需的费用. 求: 1.在不扩容的情况下,1到N的最大流: 2.将1到N的最大流增加K所需的最小费用. 题解 ...
- 洛谷$P2604\ [ZJOI2010]$网络扩容 网络流
正解:网络流 解题报告: 传送门$QwQ$ 昂第一问跑个最大流就成不说$QwQ$ 然后第二问,首先原来剩下的边就成了费用为0的边?然后原来的所有边连接的两点都给加上流量为$inf$费用为$w$的边,保 ...
- 洛谷 P2604 [ZJOI2010]网络扩容
题目描述 给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是指将容量扩大1所需的费用.求: 1. 在不扩容的情况下,1到N的最大流: 2. 将1到N的最大流增加K所需的最小扩容费用. ...
- 【题解】Luogu P2604 [ZJOI2010]网络扩容
原题传送门:P2604 [ZJOI2010]网络扩容 这题可以说是板题 给你一个图,先让你求最大流 再告诉你,每条边可以花费一些代价,使得流量加一 问至少花费多少代价才能使最大流达到k 解法十分简单 ...
- BZOJ 1834 Luogu P2604 [ZJOI2010]网络扩容 (最小费用最大流)
题目连接: (luogu) https://www.luogu.org/problemnew/show/P2604 (bzoj) https://www.lydsy.com/JudgeOnline/p ...
- P2604 [ZJOI2010]网络扩容
思路 简单的费用流问题,跑出第一问后在残量网络上加边求最小费用即可 代码 #include <cstdio> #include <algorithm> #include < ...
- 【洛谷 P1251】 餐巾计划问题 (费用流)
题目链接 我做的网络流24题里的第一题.. 想是不可能想到的,只能看题解. 首先,我们拆点,将一天拆成晚上和早上,每天晚上会受到脏餐巾(来源:当天早上用完的餐巾,在这道题中可理解为从原点获得),每天早 ...
- 洛谷 P2045 方格取数加强版【费用流】
题目链接:https://www.luogu.org/problemnew/show/P2045 题目描述 给出一个n*n的矩阵,每一格有一个非负整数Aij,(Aij <= 1000)现 ...
- 洛谷P2604 网络扩容 拆点+费用流
原题链接 这题貌似比较水吧,最简单的拆点,直接上代码了. #include <bits/stdc++.h> using namespace std; #define N 1000 #def ...
随机推荐
- 使用vue的mixins混入实现对正在编辑的页面离开时提示
mixins.ts import { Vue, Component, Watch } from "vue-property-decorator" Component.registe ...
- pixi.js tools
pixi群 881784250 Awesome pixi.js tools A list of useful libs/resources/tools for renowned html5 rende ...
- MVC 中创建自己的异常处理
1.新建类一个类继承 HandleErrorAttribute 类把异常书写到队列中 public class MyExceptionAttribute: HandleErrorAttribute { ...
- 第149天:javascript中this的指向详解
js中的this指向十分重要,了解js中this指向是每一个学习js的人必学的知识点,今天没事,正好总结了js中this的常见用法,喜欢的可以看看: 1.全局作用域或者普通函数中this指向全局对象w ...
- bzoj2699 更新
题意 对于一个数列A[1..N],一种寻找最大值的方法是:依次枚举A[2]到A[N],如果A[i]比当前的A[1]值要大,那么就令A[1]=A[i],最后A[1]为所求最大值.假设所有数都在范围[1, ...
- 【BZOJ1497】【NOI2006】最大获利(网络流)
[BZOJ1497][NOI2006]最大获利(网络流) 题面 BZOJ Description 新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是挑战.THU集团旗下的CS& ...
- WlanGetAvailableNetworkList
原文msdn链接地址:https://docs.microsoft.com/zh-cn/windows/desktop/api/wlanapi/nf-wlanapi-wlangetavailablen ...
- CVE-2017-16995 Ubuntu16.04本地提权漏洞复现
0x01 前言 该漏洞由Google project zero发现.据悉,该漏洞存在于带有 eBPF bpf(2)系统(CONFIG_BPF_SYSCALL)编译支持的Linux内核中,是一个内存任意 ...
- 【agc006C】Rabbit Exercise
Portal --> agc006C Solution 啊感觉是好有意思的一道题qwq官方题解里面的说辞也是够皮的哈哈哈..(大概就是说如果你没有意识到那个trick的话这题这辈子都做不出来qw ...
- 【BZOJ 4449】[Neerc2015]Distance on Triangulation 多边形分治结构
这题好神啊……正解方向是分治,据我所知的分治方法有:I.离线后直接对多边形以及所有的询问进行分治 II.建立多边形的分治结构(对于三角形来说类似线段树,对于对角线来说类似平衡树),然后每次在这个分治结 ...