一、常数向量范数

  • \(L_0\) 范数

\(\Vert x \Vert _0\overset{def}=\)向量中非零元素的个数

其在matlab中的用法:

sum( x(:) ~= 0 )
  • \(L_1\) 范数

\(\Vert x \Vert_1\overset{def} = \sum\limits_{i=1}^{m} \vert x_{i}\vert = \vert x_{1}\vert + \cdots +\vert x_{m}\vert\),即向量元素绝对值之和

其在matlab中的用法:

norm(x, 1)
  • \(L_2\) 范数

\(\Vert x \Vert_2=(\vert x_1\vert^2+\cdots+\vert x_m\vert^2)^{1/2}\),即向量元素绝对值的平方和后开方

其在matlab中的用法:

norm(x, 2)
  • \(L_{\infty}\) 范数
  • 极大无穷范数

\(\Vert x \Vert_{\infty}= max \{ \vert x_1\vert, \cdots,\vert x_m\vert \}\),即所有向量元素绝对值中的最大值

其在matlab中的用法:

norm(x, inf)
  • 极小无穷范数

\(\Vert x \Vert_{\infty}= min \{ \vert x_1 \vert, \cdots, \vert x_m\vert \}\),即所有向量元素绝对值中的最小值

其在matlab中的用法:

norm(x, -inf)

二、矩阵范数

诱导范数和元素形式范数是矩阵范数的两种主要类型。

1. 诱导范数

  • \(L_1\) 范数(列和范数)

\(\Vert A \Vert_1= \underset{1\leqslant j\leqslant n}{\mathop{\max }}\sum\limits_{i=1}^{m}\{ \vert a_{ij}\vert \}\),即所有矩阵列向量绝对值之和的最大值

其在matlab中的用法:

norm(A,1)
  • \(L_2\) 范数

\(\Vert A \Vert_2=\sqrt{\lambda _{i}}\),其中 \(\lambda_i\) 为 \(A^{T}A\) 的最大特征值。

其在matlab中的用法:

norm(A,2)
  • \(L_{\infty}\) 范数(行和范数)

\(\Vert A \Vert_{\infty}= \underset{1\leqslant i\leqslant m}{\mathop{\max }}\sum\limits_{j=1}^{n}\{\vert a_{ij}\vert\}\),即所有矩阵行向量绝对值之和的最大值

其在matlab中的用法:

norm(A,inf)

2. "元素形式"范数

  • \(L_{0}\) 范数

\(\Vert A \Vert_0\overset{def}=矩阵的非零元素的个数\)

其在matlab中的用法:

sum(sum(A ~= 0))
  • \(L_{1}\) 范数

\(\Vert A \Vert_1\overset{def}=\sum\limits_{i=1}^{m}\sum\limits_{j=1}^{n}\vert a_{ij}\vert\),即矩阵中的每个元素绝对值之和

其在matlab中的用法:

sum(sum(abs(A)))
  • \(L_{F}\) 范数

\(\Vert A \Vert_F\overset{def}=(\sum\limits_{i=1}^{m}\sum\limits_{j=1}^{n}\vert a_{ij}\vert^2)^{1/2}\),即矩阵的各个元素平方之和后开方

其在matlab中的用法:

norm(A,'fro')
  • \(L_{\infty}\) 范数

\(\Vert A \Vert_{\infty}= \underset{i=1,\cdots,m;\ j=1,\cdots,n}{\mathop{\max }}\{\vert a_{ij}\vert \}\),即矩阵的各个元素绝对值的最大值

其在matlab中的用法:

max(max(abs(A)))
  • 核范数

\(\Vert A \Vert_{*}= \sum\limits_{i=1}^{n}\lambda_i\),\(\lambda_i\) 为 \(A\) 的奇异值,即所有矩阵奇异值之和

其在matlab中的用法:

sum(svd(A))

本文作者:@qiuhlee

本文为作者原创,转载请注明出处。本文地址:https://www.cnblogs.com/qiuhlee/p/9474650.html

向量与矩阵的范数及其在matlab中的用法(norm)的更多相关文章

  1. numpy中np.linalg.norm()求向量、矩阵的范数

    np.linalg.norm() # linalg = linear(线性) + algebra(代数),   norm表示范数 x_norm = np.linalg.norm(x, ord=None ...

  2. interp1一维数据插值在matlab中的用法

    转载:https://ww2.mathworks.cn/help/matlab/ref/interp1.html?s_tid=srchtitle#btwp6lt-2_1 interp1 一维数据插值( ...

  3. Matlab中imagesc用法

    来源:https://ww2.mathworks.cn/help/matlab/ref/imagesc.html?searchHighlight=imagesc&s_tid=doc_srcht ...

  4. matlab中set用法

    来源:https://www.cnblogs.com/sddai/p/5467500.html 1.MATLAB给每种对象的每一个属性规定了一个名字,称为属性名,而属性名的取值成为属性值.例如,Lin ...

  5. Matlab中ismember用法

    >> a = magic(3) a = 8 1 6 3 5 7 4 9 2 >> ismember(a,3) ans = 0 0 0 1 0 0 0 0 0 >> ...

  6. RBF、GRNN 和 PNN 神经网络在Matlab中的用法

    一.RBF神经网络 RBF神经网络概述 径向基函数神经网络 与 BP 神经网络的区别在于训练过程--其参数初始化具有一定方法,并非随机,隐含层的末尾使用了径向基函数,它的输出经过加权和得到 LW2.1 ...

  7. MATLAB 中NORM运用

    格式:n=norm(A,p)功能:norm函数可计算几种不同类型的矩阵范数,根据p的不同可得到不同的范数 以下是Matlab中help norm 的解释 NORM   Matrix or vector ...

  8. matlab中norm函数的用法

    格式:n=norm(A,p) 功能:norm函数可计算几种不同类型的矩阵范数,根据p的不同可得到不同的范数 以下是Matlab中help norm 的解释 NORM   Matrix or vecto ...

  9. matlab中矩阵的表示与简单操作

    原文地址为:matlab矩阵的表示和简单操作 一.矩阵的表示在MATLAB中创建矩阵有以下规则: a.矩阵元素必须在”[ ]”内: b.矩阵的同行元素之间用空格(或”,”)隔开: c.矩阵的行与行之间 ...

随机推荐

  1. 使用 TestNG 并发测试 ;

    使用TestNG对IE /Chrome/firefox 进行兼容性并发测试 : package testNGTest; import org.openqa.selenium.By; import or ...

  2. c语言基础笔记

    一 :数据类型 1.float类型,在输出的时候可以使用 .数字  来把浮点数精确到小数点后几位,比如 printf("%.3f",float)精确到小数点后三位,不足补0 2.字 ...

  3. Hadoop基于Protocol Buffer的RPC实现代码分析-Server端--转载

    原文地址:http://yanbohappy.sinaapp.com/?p=110 最新版本的Hadoop代码中已经默认了Protocol buffer(以下简称PB,http://code.goog ...

  4. uoj54-bzoj3434-时空穿梭

    题意 在一个 \(n\) 维空间中,求一个点可以用一个 \(n\) 维向量 \((x_1,x_2,\dots x_n)\) 表示.现在要选出 \(c\) 个点,有三个限制: 设 \(x_i\) 表示任 ...

  5. 关于在springmvc下使用@RequestBody报http status 415的错误解决办法

    网上有很多原因,进行整理后主要有以下几类 springmvc添加配置.注解: pom.xml添加jackson包引用: Ajax请求时没有设置Content-Type为application/json ...

  6. list的4种遍历方式

    import java.util.ArrayList;import java.util.Iterator;import java.util.List; import com.hbut.domain.P ...

  7. 【UOJ#79】一般图最大匹配(带花树)

    [UOJ#79]一般图最大匹配(带花树) 题面 UOJ 题解 带花树模板题 关于带花树的详细内容 #include<iostream> #include<cstdio> #in ...

  8. linux安全第二周学习总结

    一.实验过程 cd LinuxKernel/linux-3.9.4 qemu -kernel arch/x86/boot/bzImage 然后cd mykernel 您可以看到qemu窗口输出的内容的 ...

  9. HikariPool-1 - Connection is not available, request timed out after XXXXms.

    hikaripool-0-连接不可用,请求在30000ms之后超时.意思是池等待30000ms的免费连接,但是您的应用程序没有返回任何连接. 原因一:连接泄漏(在从池中借用之后连接没有关闭).解决方法 ...

  10. 电子商务(电销)平台中用户模块(User)数据库设计明细

    以下是自己在电子商务系统设计中的订单模块的数据库设计经验总结,而今发表出来一起分享,如有不当,欢迎跟帖讨论~ 用户基础表(user_base)|-- 自动编号 (user_id)|-- 用户名 (us ...