CH5102 Mobile Service【线性dp】
5102 Mobile Service 0x50「动态规划」例题
描述
一个公司有三个移动服务员,最初分别在位置1,2,3处。
如果某个位置(用一个整数表示)有一个请求,那么公司必须指派某名员工赶到那个地方去。某一时刻只有一个员工能移动,且不允许在同样的位置出现两个员工。从 p 到 q 移动一个员工,需要花费 c(p,q)。这个函数不一定对称,但保证 c(p,p)=0。
给出N个请求,请求发生的位置分别为 p_1~p_N。公司必须按顺序依次满足所有请求,目标是最小化公司花费,请你帮忙计算这个最小花费。N≤1000,位置是1~200的整数。
输入格式
第一行有两个整数L,N(3<=L<=200, 1<=N<=1000)。L是位置数;N是请求数。每个位置从1到L编号。下L行每行包含L个非负整数。第i+1行的第j个数表示c(i,j) ,并且它小于2000。最后一行包含N个数,是请求列表。一开始三个服务员分别在位置1,2,3。
输出格式
一个数M,表示最小服务花费。
样例输入
5 9
0 1 1 1 1
1 0 2 3 2
1 1 0 4 1
2 1 5 0 1
4 2 3 4 0
4 2 4 1 5 4 3 2 1
样例输出
5
题意:
有n个点标号为1-n,现在有三个人站在1,2,3处
给出一个矩阵 表示从i到j需要的花费
给出m个询问,每次给一个pos表示这一次pos要有人
问 m次询问总的cost 是多少
思路:
dp[i, x, y, z]表示对于第i次查询,服务员分别在xyz时的总花费
那么第i+1次时,只有三种可能。
并且可以发现,其实只需要三维即可,因为三个服务员中一定有一个位置是确定的
他在i+1时一定是在pi,并且服务员之间交换位置是不影响答案的
所以i+1时只需要维护dp[i+1, x, y], dp[i+1, pi, y], dp[i+1, x, pi]
dp[i+1, x, y] = min(dp[i+1, x, y], dp[i, x, y] + c(pi, pi+1), z从pi到pi+1
dp[i+1, pi, y] = min(dp[i+1,pi, y], dp[i, x, y] + c(x, pi+1),x到pi+1,z与x交换位置
dp[i+1, x, pi] = min(dp[i+1,y, pi], dp[i, x, y] + c(y, pi+1),y到pi+1, z与y交换位置
需要判断一下 xyz中是否有与pi+1相同的点,若有则只有一种走法了
虐狗宝典笔记:
1.求解线性DP问题,一般先确定“阶段”。若“阶段”不足以表示一个状态,则可以把所需的附加信息也作为状态的维度。
转移时,若总是从一个阶段转移到下一个阶段,则没有必要关心附加信息维度的大小变化情况,因为“无后效性”已经由“阶段”保证
2.在确定dp状态时,要选择最小的能够覆盖整个状态空间的“维度集合”
若DP状态由多个维度构成,则应检查这些维度之间能否相互导出,用尽量少的维度覆盖整个状态空间,排除冗余维度。
//#include <bits/stdc++.h>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<stdio.h>
#include<cstring>
#include<map> #define inf 0x3f3f3f3f
using namespace std;
typedef long long int LL; const int maxn = ;
int c[maxn][maxn], dp[][maxn][maxn], p[];
int l, n; int main()
{
scanf("%d%d", &l, &n);
for(int i = ; i <= l; i++){
for(int j = ; j <= l; j++){
scanf("%d", &c[i][j]);
}
}
for(int i = ; i <= n; i++){
scanf("%d", &p[i]);
}
memset(dp, 0x3f, sizeof(dp)); dp[][][] = ;
p[] = ;
for(int i = ; i <= n; i++){
for(int x = ; x <= l; x++){
for(int y = ; y <= l; y++){
if(dp[i - ][x][y] != inf){
int z = p[i - ];
if(y != p[i] && x != p[i]){
dp[i][x][y] = min(dp[i - ][x][y] + c[z][p[i]], dp[i][x][y]);
}
if(y != p[i] && z != p[i]){
dp[i][y][z] = min(dp[i - ][x][y] + c[x][p[i]], dp[i][y][z]);
}
if(x != p[i] && z != p[i]){
dp[i][x][z] = min(dp[i - ][x][y] + c[y][p[i]], dp[i][x][z]);
}
dp[i - ][x][y] = 0x3f3f3f3f;
}
}
}
} int ans = inf;
for(int x = ; x <= l; x++){
for(int y = ; y <= l; y++){
ans = min(ans, dp[n][x][y]);
}
}
printf("%d\n", ans);
return ;
}
CH5102 Mobile Service【线性dp】的更多相关文章
- [tyvj 1061] Mobile Service (线性dp 滚动数组)
3月15日第一题! 题目限制 时间限制 内存限制 评测方式 题目来源 1000ms 131072KiB 标准比较器 Local 题目描述 一个公司有三个移动服务员.如果某个地方有一个请求,某个员工必须 ...
- CH5102 Mobile Service
CH5102 Mobile Service 描述 一个公司有三个移动服务员,最初分别在位置1,2,3处.如果某个位置(用一个整数表示)有一个请求,那么公司必须指派某名员工赶到那个地方去.某一时刻只有一 ...
- CH 5102 Mobile Service(线性DP)
CH 5102 Mobile Service \(solution:\) 这道题很容易想到DP,因为题目里已经说了要按顺序完成这些请求.所以我们可以线性DP,但是这一题的状态不是很好设,因为数据范围有 ...
- 0x51 线性DP
数据结构没什么好写的..分块和整体二分还有点分学得很懂..果然我还是比较适合这些东西 poj2279 奇怪题,我的想法就是五维记录最边上的一斜排,会M,结果的的确确是锻炼思维的,正解并不是DP2333 ...
- 线性dp(记忆化搜索)——cf953C(经典好题dag和dp结合)
非常好的题!和spoj 的 Mobile Service有点相似,用记忆化搜索很容易解决 看了网上的题解,也是减掉一维,刚好可以开下数组 https://blog.lucien.ink/archive ...
- TYVJ1061 Mobile Service
P1061 Mobile Service 时间: 1000ms / 空间: 131072KiB / Java类名: Main 描述 一个公司有三个移动服务员.如果某个地方有一个请求,某个员工必须赶到那 ...
- Unable to create Azure Mobile Service: Error 500
I had to go into my existing azure sql database server and under the configuration tab select " ...
- 如何使用新浪微博账户进行应用登录验证(基于Windows Azure Mobile Service 集成登录验证)
使用三方账号登录应用应该对大家来说已经不是什么新鲜事儿了,但是今天为什么还要在这里跟大家聊这个话题呢,原因很简单 Windows Azure Mobiles Service Authenticatio ...
- LightOJ1044 Palindrome Partitioning(区间DP+线性DP)
问题问的是最少可以把一个字符串分成几段,使每段都是回文串. 一开始想直接区间DP,dp[i][j]表示子串[i,j]的答案,不过字符串长度1000,100W个状态,一个状态从多个状态转移来的,转移的时 ...
随机推荐
- C++和C#实现剪切板数据交互
c#端由于system.windows.form自带的剪切板功能太少,所以写了一个Helper类把接口转了出来.这样就可以用不同的uint的id了. 并且自带的剪切板必须执行在[STAThread]模 ...
- Java Main如何被执行?
java应用程序的启动在在/hotspot/src/share/tools/launcher/java.c的main()函数中,而在虚拟机初始化过程中,将创建并启动Java的Main线程.最后将调用J ...
- vue-cli中实现全选、单选计算总价格(vue2.0)
<template> <div> <table> <tr> <td><input type="checkbox" ...
- linux的RMP命令(rmp包的安装与反安装)
RMP 是 LINUX 下的一种软件的可执行程序,你只要安装它就可以了.这种软件安装包通常是一个RPM包(Redhat Linux Packet Manager,就是Redhat的包管理器),后缀是. ...
- phoenix 入门
http://phoenix.apache.org/Phoenix-in-15-minutes-or-less.html Blah, blah, blah - I just want to get s ...
- C语言 · 数的读法
基础练习 数的读法 时间限制:1.0s 内存限制:512.0MB 问题描述 Tom教授正在给研究生讲授一门关于基因的课程,有一件事情让他颇为头疼:一条染色体上有成千上万个碱基对,它们从0 ...
- Applet是java的自动执行方式(这是它的优势,主要用于HTML)
进度条:ProgressBar. JcomboBox:下拉菜单:在AWT中同类组件是choice. JlistPanel:选择列表 BorderPanel:设置边框 JsplitPanel:可将容器分 ...
- 【NOIP模拟题】小象涂色(概率+期望+递推)
表示数学是个渣... 其实只需要推出每个箱子k次以后的颜色为i的概率就能算出期望了.. 对于区间[l, r]的箱子因为是任意颜色且任意取,所以概率分别为1/c和1/2,那么整体概率就为这两个的乘积.根 ...
- (转)spring IOC、DI理解
转自: http://www.cnblogs.com/xdp-gacl/p/4249939.html 个人理解: IOC控制反转,反转的是获取依赖对象的方式.传统的应用在存在依赖关系时,比如A依赖于B ...
- jQuery功能函数详解
jQuery通过$.browser对象获取浏览器信息. 属性 说明msie 如果是ie为true,否则为falsemozilla 如果是mozilla相关的浏览器为true,否则为falsesafar ...