题意:第一象限有n个点,你从x正半轴任选一个位置出发,vy恒定,vx可以任意变化,不过只能在-vy/r到vy/r之间变化,问你最多能经过多少个点。

暴力dp是n^2,不可取。

注意到,一个点,所能到达它的点,是它后面一个张角内的所有点。这个张角很容易算出。

于是可以将这些点全部映射到一个新的坐标系内,使得这个坐标系内每个点左下方的点都是能到达它的点。(没必要真的算出那些真的变换后的坐标,可以以到那个虚拟张角的两条边的距离作为坐标,这样虽然扭曲了一点,但不影响答案。)

于是转化成了二维偏序问题,可以用一维排序+一维线段树维护左下方的最大值来解决。

注意是实数点,离散化的时候要处理好误差。

#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const double eps=0.0000001;
struct Point{
double x,y;
Point(const double &x,const double &y){
this->x=x;
this->y=y;
}
Point(){}
void read(){
scanf("%lf%lf",&x,&y);
}
double length(){
return sqrt(x*x+y*y);
}
}a[100005];
typedef Point Vector;
Vector operator - (const Point &a,const Point &b){
return Vector(a.x-b.x,a.y-b.y);
}
double Cross(const Vector &a,const Vector &b){
return a.x*b.y-a.y*b.x;
}
double DisToLine(Point P,Point A,Point B)
{
Vector v1=B-A,v2=P-A;
return fabs(Cross(v1,v2))/v1.length();
}
int n,r,w,h;
pair<double,int> b[100005];
struct data{
double v;
int p;
data(const double &v,const int &p){
this->v=v;
this->p=p;
}
data(){}
}t[100005];
bool cmp(const data &a,const data &b){
return a.v<b.v;
}
bool cm2(const pair<double,int> &a,const pair<double,int> &b){
return a.second<b.second;
}
int ans;
int maxv[100005<<2];
void update(int p,int v,int rt,int l,int r){
if(l==r){
maxv[rt]=v;
return;
}
int m=(l+r>>1);
if(p<=m){
update(p,v,rt<<1,l,m);
}
else{
update(p,v,rt<<1|1,m+1,r);
}
maxv[rt]=max(maxv[rt<<1],maxv[rt<<1|1]);
}
int query(int ql,int qr,int rt,int l,int r){
if(ql<=l && r<=qr){
return maxv[rt];
}
int m=(l+r>>1),res=0;
if(ql<=m){
res=max(res,query(ql,qr,rt<<1,l,m));
}
if(m<qr){
res=max(res,query(ql,qr,rt<<1|1,m+1,r));
}
return res;
}
int main(){
//freopen("g.in","r",stdin);
scanf("%d%d%d%d",&n,&r,&w,&h);
Point p=Point((double)w*0.5,-(double)w*(double)r*0.5);
Point q=Point((double)w,0.0);
Point yd=Point(0.0,0.0);
for(int i=1;i<=n;++i){
a[i].read();
double d1=DisToLine(a[i],p,q);
double d2=DisToLine(a[i],p,yd);
a[i]=Point(d1,d2);
b[i].first=d1;
t[i].v=d2;
t[i].p=i;
}
sort(t+1,t+n+1,cmp);
int zy=0;
b[t[1].p].second=++zy;
for(int i=2;i<=n;++i){
if(fabs(t[i].v-t[i-1].v)>eps){
++zy;
}
b[t[i].p].second=zy;
}
int sta;
sort(b+1,b+n+1);
for(int i=1;i<=n;++i){
if(i==1 || fabs(b[i].first-b[i-1].first)>eps){
sta=i;
}
if(i==n || fabs(b[i].first-b[i+1].first)>eps){
sort(b+sta,b+i+1,cm2);
for(int j=sta;j<=i;++j){
int x=query(1,b[j].second,1,1,zy);
ans=max(ans,x+1);
update(b[j].second,x+1,1,1,zy);
}
}
}
printf("%d\n",ans);
return 0;
}

【坐标变换】【二维偏序】【线段树】Gym - 100820G - Racing Gems的更多相关文章

  1. 二维$MLE$线段树

    关于二维线段树,ta死了 先来看看两种二维线段树的打法 1.四叉树 然而ta死了,ta是$\Theta (n)$的,加上线段树的常数,$T$飞稳 2.线段树套线段树 我尽量画出来... 图中每个方块是 ...

  2. SGU 521 North-East ( 二维LIS 线段树优化 )

    521. "North-East" Time limit per test: 0.5 second(s)Memory limit: 262144 kilobytes input: ...

  3. [luogu4479][BJWC2018]第k大斜率【二维偏序+二分+离散化+树状数组】

    传送门 https://www.luogu.org/problemnew/show/P4479 题目描述 在平面直角坐标系上,有 n 个不同的点.任意两个不同的点确定了一条直线.请求出所有斜率存在的直 ...

  4. 二维偏序+树状数组【P3431】[POI2005]AUT-The Bus

    Description Byte City 的街道形成了一个标准的棋盘网络 – 他们要么是北南走向要么就是西东走向. 北南走向的路口从 1 到 n编号, 西东走向的路从1 到 m编号. 每个路口用两个 ...

  5. 【二维偏序】【树状数组】【权值分块】【分块】poj2352 Stars

    经典问题:二维偏序.给定平面中的n个点,求每个点左下方的点的个数. 因为 所有点已经以y为第一关键字,x为第二关键字排好序,所以我们按读入顺序处理,仅仅需要计算x坐标小于<=某个点的点有多少个就 ...

  6. 树状数组 二维偏序【洛谷P3431】 [POI2005]AUT-The Bus

    P3431 [POI2005]AUT-The Bus Byte City 的街道形成了一个标准的棋盘网络 – 他们要么是北南走向要么就是西东走向. 北南走向的路口从 1 到 n编号, 西东走向的路从1 ...

  7. 洛谷 P1972 [SDOI2009]HH的项链-二维偏序+树状数组+读入挂(离线处理,思维,直接1~n一边插入一边查询),hahahahahahaha~

    P1972 [SDOI2009]HH的项链 题目背景 无 题目描述 HH 有一串由各种漂亮的贝壳组成的项链.HH 相信不同的贝壳会带来好运,所以每次散步完后,他都会随意取出一段贝壳,思考它们所表达的含 ...

  8. Nowcoder farm ( 树状数组、二维前缀和、二维偏序 )

    题目链接 分析 : 最简单的想法当然就是去模拟 直接对每个施肥料的操作进行模拟.然后计算贡献 但是这显然会超时.这题需要换一个思维 对于一个土地(也就是二维平面上的一个点)的种类是 T' 如果它被操作 ...

  9. cdq分治入门学习 cogs 1752 Mokia nwerc 2015-2016 G 二维偏序

    /* CDQ分治的对象是时间. 即对于一个时间段[L, R],我们取mid = (L + R) / 2. 分治的每层只考虑mid之前的修改对mid之后的查询的贡献,然后递归到[L,mid],(mid, ...

随机推荐

  1. PHP做文件限速下载

    <?php include("DBDA.class.php"); $db = new DBDA(); $bs = $_SERVER["QUERY_STRING&qu ...

  2. 【总结】对FFT的理解 / 【洛谷 P3803】 【模板】多项式乘法(FFT)

    题目链接 \(\Huge\text{无图,慎入}\) \(FFT\)即快速傅里叶变换,用于加速多项式乘法. 如果暴力做卷积的话就是一个多项式的每个单项式去乘另一个多项式然后加起来,时间复杂度为\(O( ...

  3. 【leetcode 简单】第十题 实现strStr()

    实现 strStr() 函数. 给定一个 haystack 字符串和一个 needle 字符串,在 haystack 字符串中找出 needle 字符串出现的第一个位置 (从0开始).如果不存在,则返 ...

  4. 【leetcode 简单】第三题 回文数

    判断一个整数是否是回文数.回文数是指正序(从左向右)和倒序(从右向左)读都是一样的整数. 示例 1: 输入: 121 输出: true 示例 2: 输入: -121 输出: false 解释: 从左向 ...

  5. Callback2.0

    Callback定义? a callback is a piece of executable code that is passed as an argument to other code, wh ...

  6. Machine Learning系列--判别式模型与生成式模型

    监督学习的任务就是学习一个模型,应用这一模型,对给定的输入预测相应的输出.这个模型的一般形式为决策函数:$$ Y=f(X) $$或者条件概率分布:$$ P(Y|X) $$监督学习方法又可以分为生成方法 ...

  7. Educational Codeforces Round 25 D - Suitable Replacement(贪心)

    题目大意:给你字符串s,和t,字符串s中的'?'可以用字符串t中的字符代替,要求使得最后得到的字符串s(可以将s中的字符位置两两交换,任意位置任意次数)中含有的子串t最多. 解题思路: 因为知道s中的 ...

  8. Python 3.6安装教程

    0x01 安装Python 1.1 说明 目前,Python有两个版本,一个是2.x版,一个是3.x版,这两个版本是不兼容的. 本教程安装的是python-3.6.1-amd64版本. Python官 ...

  9. OpenSSL 给自己颁发根证书,由根证书签发下级证书的步骤。

    1.建立根证书 (1)生成私钥 openssl genrsa -des3 -out CAroot.key 2048.产生一个2048位的私钥,在安装的openssl目录下调用openssl命令. 需要 ...

  10. django的orm中F对象的使用

    今天不巧就用上了. 就是将数据库的字段,自增1的场景. from django.db.models import F DeployPool.objects.filter(name=deployvers ...