1911: [Apio2010]特别行动队

Time Limit: 4 Sec  Memory Limit: 64 MB

Description

Input

Output

Sample Input

4
-1 10 -20
2 2 3 4

Sample Output

9

HINT

Source

dp方程:

如果j>k且j比k更优

#include<map>
#include<cmath>
#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define ll long long
#define N 1000100
#define db double
char xB[<<],*xS=xB,*xTT=xB;
#define getc() (xS==xTT&&(xTT=(xS=xB)+fread(xB,1,1<<15,stdin),xS==xTT)?0:*xS++)
#define isd(c) (c>='0'&&c<='9')
inline int read(){
char xchh;
int xaa;
while(xchh=getc(),!isd(xchh));(xaa=xchh-'');
while(xchh=getc(),isd(xchh))xaa=xaa*+xchh-'';return xaa;
}
int n,a,b,c,x[N],q[N],l,r,t;
ll f[N],sum[N];
inline ll sqr(ll x){return x*x;}
inline db cal(int j,int k){return (db)(f[j]+a*sqr(sum[j])-b*sum[j]-f[k]-a*sqr(sum[k])+b*sum[k])/(db)(*a*(sum[j]-sum[k]));}
int main()
{
scanf("%d%d%d%d",&n,&a,&b,&c);
for(int i=;i<=n;i++) x[i]=read();
for(int i=;i<=n;i++) sum[i]=sum[i-]+x[i];
for(int i=;i<=n;i++)
{
while(l<r&&cal(q[l],q[l+])<sum[i]) l++;
t=q[l];
f[i]=f[t]+a*sqr(sum[i]-sum[t])+b*(sum[i]-sum[t])+c;
while(l<r&&cal(q[r-],q[r])>cal(q[r],i)) r--;
q[++r]=i;
}
printf("%lld\n",f[n]);
return ;
}

bzoj 1911: [Apio2010]特别行动队 -- 斜率优化的更多相关文章

  1. BZOJ 1911: [Apio2010]特别行动队 [斜率优化DP]

    1911: [Apio2010]特别行动队 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 4142  Solved: 1964[Submit][Statu ...

  2. bzoj 1911 [Apio2010]特别行动队(斜率优化+DP)

    1911: [Apio2010]特别行动队 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 3191  Solved: 1450[Submit][Statu ...

  3. BZOJ 1911: [Apio2010]特别行动队( dp + 斜率优化 )

    sum为战斗力的前缀和 dp(x) = max( dp(p)+A*(sumx-sump)2+B*(sumx-sump)+C )(0≤p<x) 然后斜率优化...懒得写下去了... ------- ...

  4. bzoj1911[Apio2010]特别行动队 斜率优化dp

    1911: [Apio2010]特别行动队 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 5057  Solved: 2492[Submit][Statu ...

  5. [APIO2010]特别行动队 --- 斜率优化DP

    [APIO2010]特别行动队 题面很直白,就不放了. 太套路了,做起来没点感觉了. \(dp(i)=dp(j)+a*(s(i)-s(j))^{2}+b*(s(i)-s(j))+c\) 直接推出一个斜 ...

  6. bzoj 1911: [Apio2010]特别行动队【斜率优化dp】

    仔细想想好像没学过斜率优化.. 很容易推出状态转移方程\( f[i]=max{f[j]+a(s[i]-s[j])^2+b(s[i]-s[j])+c} \) 然后考虑j的选取,如果选j优于选k,那么: ...

  7. bzoj1911 [Apio2010]特别行动队——斜率优化DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1911 相当明显的斜率优化,很好做: 注意slp里面要有(double),以免出现精度问题. ...

  8. APIO2010 特别行动队 & 斜率优化DP算法笔记

    做完此题之后 自己应该算是真正理解了斜率优化DP 根据状态转移方程$f[i]=max(f[j]+ax^2+bx+c),x=sum[i]-sum[j]$ 可以变形为 $f[i]=max((a*sum[j ...

  9. bzoj 1911: [Apio2010]特别行动队

    #include<cstdio> #include<iostream> #define M 1000009 #define ll long long using namespa ...

随机推荐

  1. bootstrap通过ajax请求JSON数据后填充到模态框

    1.   JSP页面中准备模态框 <!-- 详细信息模态框(Modal) --> <div> <div class="modal fade" id=& ...

  2. oracle 归档模式、补充日志

    1.归档模式: Oracle数据库有联机重做日志,这个日志是记录对数据库所做的修改,比如插入,删除,更新数据等,对这些操作都会记录在联机重做日志里.一般数据库至少要有2个联机重做日志组.当一个联机重做 ...

  3. Oracle-AWR报告简介及如何生成【转】

    AWR报告 awr报告是oracle 10g及以上版本提供的一种性能收集和分析工具,它能提供一个时间段内整个系统资源使用情况的报告,通过这个报告,我们就可以了解Oracle数据库的整个运行情况,比如硬 ...

  4. MySQL5.6.26升级到MySQL5.7.9实战方案【转】

    MySQL5.6.26升级到MySQL5.7.9实战方案 转自 MySQL5.6.26升级到MySQL5.7.9实战方案 - 其他网络技术 - 红黑联盟http://www.2cto.com/net/ ...

  5. discuz伪静态设置

        Discuz! 通用伪静态 -包含所有类型主机本人找了一下午才找到的,谢谢这位原创者,发出来让大家用. 第一步:打开后台  全局 SEO设置 全部打勾<ignore_js_op>  ...

  6. insta php-fpm 的配置

    [global]pid = /www/wdlinux/phps/70/var/run/php-fpm.piderror_log = /www/wdlinux/phps/70/var/log/php-f ...

  7. python基础(11)--面向对象

    1.概述 面向过程:根据业务的逻辑从上到下写代码 函数式:将某功能代码封装到函数中,日后便无需重复编写,仅调用函数即可 面向对象:对函数进行分类和封装,让开发更快更好更强 面向过程编程最易被初学者接受 ...

  8. beego学习笔记(3)

    相对复杂一点的示例: package main import "github.com/astaxie/beego" type MainController struct{ beeg ...

  9. 自家人不认识自家人——考你一道有趣的Javascript小题目

    今天的内容很简单,给大家分享一个有趣的Javascript小题目. 题目很简单,就是填空: var a = ______; var b = a; alert(a==b); // alert " ...

  10. 【hdoj_1715】大菲波数(大数+100000000进制)

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=1715 本题采用大数加法即可解决.采用100000000进制速度更快. C++代码如下: #include& ...