1911: [Apio2010]特别行动队

Time Limit: 4 Sec  Memory Limit: 64 MB

Description

Input

Output

Sample Input

4
-1 10 -20
2 2 3 4

Sample Output

9

HINT

Source

dp方程:

如果j>k且j比k更优

#include<map>
#include<cmath>
#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define ll long long
#define N 1000100
#define db double
char xB[<<],*xS=xB,*xTT=xB;
#define getc() (xS==xTT&&(xTT=(xS=xB)+fread(xB,1,1<<15,stdin),xS==xTT)?0:*xS++)
#define isd(c) (c>='0'&&c<='9')
inline int read(){
char xchh;
int xaa;
while(xchh=getc(),!isd(xchh));(xaa=xchh-'');
while(xchh=getc(),isd(xchh))xaa=xaa*+xchh-'';return xaa;
}
int n,a,b,c,x[N],q[N],l,r,t;
ll f[N],sum[N];
inline ll sqr(ll x){return x*x;}
inline db cal(int j,int k){return (db)(f[j]+a*sqr(sum[j])-b*sum[j]-f[k]-a*sqr(sum[k])+b*sum[k])/(db)(*a*(sum[j]-sum[k]));}
int main()
{
scanf("%d%d%d%d",&n,&a,&b,&c);
for(int i=;i<=n;i++) x[i]=read();
for(int i=;i<=n;i++) sum[i]=sum[i-]+x[i];
for(int i=;i<=n;i++)
{
while(l<r&&cal(q[l],q[l+])<sum[i]) l++;
t=q[l];
f[i]=f[t]+a*sqr(sum[i]-sum[t])+b*(sum[i]-sum[t])+c;
while(l<r&&cal(q[r-],q[r])>cal(q[r],i)) r--;
q[++r]=i;
}
printf("%lld\n",f[n]);
return ;
}

bzoj 1911: [Apio2010]特别行动队 -- 斜率优化的更多相关文章

  1. BZOJ 1911: [Apio2010]特别行动队 [斜率优化DP]

    1911: [Apio2010]特别行动队 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 4142  Solved: 1964[Submit][Statu ...

  2. bzoj 1911 [Apio2010]特别行动队(斜率优化+DP)

    1911: [Apio2010]特别行动队 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 3191  Solved: 1450[Submit][Statu ...

  3. BZOJ 1911: [Apio2010]特别行动队( dp + 斜率优化 )

    sum为战斗力的前缀和 dp(x) = max( dp(p)+A*(sumx-sump)2+B*(sumx-sump)+C )(0≤p<x) 然后斜率优化...懒得写下去了... ------- ...

  4. bzoj1911[Apio2010]特别行动队 斜率优化dp

    1911: [Apio2010]特别行动队 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 5057  Solved: 2492[Submit][Statu ...

  5. [APIO2010]特别行动队 --- 斜率优化DP

    [APIO2010]特别行动队 题面很直白,就不放了. 太套路了,做起来没点感觉了. \(dp(i)=dp(j)+a*(s(i)-s(j))^{2}+b*(s(i)-s(j))+c\) 直接推出一个斜 ...

  6. bzoj 1911: [Apio2010]特别行动队【斜率优化dp】

    仔细想想好像没学过斜率优化.. 很容易推出状态转移方程\( f[i]=max{f[j]+a(s[i]-s[j])^2+b(s[i]-s[j])+c} \) 然后考虑j的选取,如果选j优于选k,那么: ...

  7. bzoj1911 [Apio2010]特别行动队——斜率优化DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1911 相当明显的斜率优化,很好做: 注意slp里面要有(double),以免出现精度问题. ...

  8. APIO2010 特别行动队 & 斜率优化DP算法笔记

    做完此题之后 自己应该算是真正理解了斜率优化DP 根据状态转移方程$f[i]=max(f[j]+ax^2+bx+c),x=sum[i]-sum[j]$ 可以变形为 $f[i]=max((a*sum[j ...

  9. bzoj 1911: [Apio2010]特别行动队

    #include<cstdio> #include<iostream> #define M 1000009 #define ll long long using namespa ...

随机推荐

  1. pip install bs4安装失败

    使用管理员方式打开命令提示符框,然后pip install bs4即可安装成功:

  2. Attention-over-Attention Neural Networks for Reading Comprehension论文总结

    Attention-over-Attention Neural Networks for Reading Comprehension 论文地址:https://arxiv.org/pdf/1607.0 ...

  3. redis基础之redis-sentinel(哨兵集群)(六)

    前言 redis简单的主从复制在生产的环境下可能是不行的,因为从服务器只能读不能写,如果主服务器挂掉,那么整个缓存系统不能写入了:redis自带了sentinel(哨兵)机制可以实现高可用. redi ...

  4. go标识符、变量、常量

    标识符 标识符是用来表示Go中的变量名或者函数名,以字母或_开头.后可跟着字母.数字. _ 关键字 关键字是Go语言预先定义好的,有特殊含义的标识符. 变量 1. 语法:var identifier ...

  5. 19.Remove Nth Node From End of List---双指针

    题目链接 题目大意:删除单链表中倒数第n个节点.例子如下: 法一:双指针,fast指针先走n步,然后slow指针与fast一起走,记录slow前一个节点,当fast走到链表结尾,slow所指向的指针就 ...

  6. Firefox缓存文件夹位置设置及清除缓存方法

    地址栏敲入: about:config, 新建一个"browser.cache.disk.parent_directory", 并设置为你要的缓存文件夹, 例如:  "F ...

  7. MySQL 约束类型

    约束是一种限制,它通过对表的行或列的数据做出限制,来确保表的数据的完整性.唯一性. MYSQL中,常用的几种约束: 约束类型: 主键 外键 唯一 非空 自增 默认值 关键字: primary key ...

  8. Nginx源码分析-ngx_module_s结构体

    该结构体是整个Nginx模块化架构最基本的数据结构体.它描述了Nginx程序中一个模块应该包括的基本属性,在tengine/src/core/ngx_conf_file.h中定义了该结构体 struc ...

  9. hive中行转换成列以及hive相关知识

    Hive语句: Join应该把大表放到最后 左连接时,左表中出现的JOIN字段都保留,右表没有连接上的都为空.对于带WHERE条件的JOIN语句,例如: 1 SELECT a.val, b.val F ...

  10. java基础16 捕获、抛出以、自定义异常和 finally 块(以及关键字:throw 、throws)

    1.异常的体系 /* ------|Throwable:所有异常和错误的超类 ----------|Error(错误):错误一般用于jvm或者硬件引发的问题,所以我们一般不会通过代码去处理错误的 -- ...