link

题目大意:给您一个数 n, 每次从n的所有约数(包含1、n)中等概率选出一个约数替换n,重复操作k次,求最后结果期望值%1e9+7。

题解:考虑暴力,我们设f(n,k)代表答案,则有f(n,k)=sum_{d|n}f(d,k-1)。f(n,0)=n。

我们发现如果把n分解质因数,最后结果就是所有质因子若干次方结果乘积(f是积性函数)。

分解质因数后,我们设g(n,k)代表p^n次方执行k次的结果,由于n是log级别的,所以可以直接dp了。

最后得到了p^0…p^n的分布,加起来乘到答案里就行了。

代码

#include <cstdio>
using namespace std; const int xkj = 1000000007; long long n, k, tmp;
long long d[30];
int p[30], tot;
int f[60], g[60], inv[60]; int qpow(int x, int y)
{
int res = 1;
for (x %= xkj; y > 0; y >>= 1, x = x * (long long)x % xkj)
if (y & 1) res = res * (long long)x % xkj;
return res;
} int work(long long p, int m)
{
for (int i = 0; i < m; i++) f[i] = 0;
f[m] = 1;
for (int t = 1; t <= k; t++)
{
for (int i = 0; i <= m; i++) g[i] = 0;
for (int i = 0; i <= m; i++)
{
f[i] = f[i] * (long long)inv[i + 1] % xkj;
for (int j = 0; j <= i; j++)
{
g[j] = (g[j] + f[i]) % xkj;
}
}
for (int i = 0; i <= m; i++) f[i] = g[i];
}
int res = 0, tmp = 1; p %= xkj;
for (int j = 0; j <= m; j++) res = (res + f[j] * (long long)tmp % xkj) % xkj, tmp = tmp * p % xkj;
return res;
} int main()
{
scanf("%lld%lld", &n, &k); tmp = n;
for (int i = 0; i < 60; i++) inv[i] = qpow(i, xkj - 2);
for (int i = 2; i * (long long)i <= n; i++)
{
if (tmp % i == 0)
{
d[++tot] = i, p[tot] = 1, tmp /= i;
while (tmp % i == 0) tmp /= i, p[tot]++;
}
}
if (tmp > 1) d[++tot] = tmp, p[tot] = 1;
int ans = 1;
for (int i = 1; i <= tot; i++) ans = ans * (long long)work(d[i], p[i]) % xkj;
printf("%d\n", ans);
return 0;
}

CF1097D Makoto and a Blackboard(期望)的更多相关文章

  1. cf1097D. Makoto and a Blackboard(期望dp)

    题意 题目链接 Sol 首先考虑当\(n = p^x\),其中\(p\)是质数,显然它的因子只有\(1, p, p^2, \dots p^x\)(最多logn个) 那么可以直接dp, 设\(f[i][ ...

  2. CF1097D Makoto and a Blackboard

    题目地址:CF1097D Makoto and a Blackboard 首先考虑 \(n=p^c\) ( \(p\) 为质数)的情况,显然DP: 令 \(f_{i,j}\) 为第 \(i\) 次替换 ...

  3. CF1097D Makoto and a Blackboard(期望)

    [Luogu-CF1097D] 给定 \(n,k\)一共会进行 \(k\) 次操作 , 每次操作会把 \(n\) 等概率的变成 \(n\) 的某个约数 求操作 \(k\) 次后 \(n\) 的期望是多 ...

  4. CF1097D Makoto and a Blackboard 积性函数、概率期望、DP

    传送门 比赛秒写完ABC结果不会D--最后C还fst了qwq 首先可以想到一个约数个数\(^2\)乘上\(K\)的暴力DP,但是显然会被卡 在\(10^{15}\)范围内因数最多的数是\(978217 ...

  5. CF1097D Makoto and a Blackboard 质因数分解 DP

    Hello 2019 D 题意: 给定一个n,每次随机把n换成它的因数,问经过k次操作,最终的结果的期望. 思路: 一个数可以表示为质数的幂次的积.所以对于这个数,我们可以分别讨论他的质因子的情况. ...

  6. D Makoto and a Blackboard

    Makoto and a Blackboard time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  7. Codeforces1097D. Makoto and a Blackboard(数论+dp+概率期望)

    题目链接:传送门 题目大意: 给出一个整数n写在黑板上,每次操作会将黑板上的数(初始值为n)等概率随机替换成它的因子. 问k次操作之后,留在黑板上的数的期望. 要求结果对109+7取模,若结果不是整数 ...

  8. 【DP】【CF1097D】 Makoto and a Blackboard

    更好的阅读体验 Description 给定一个数 \(n\),对它进行 \(k\) 次操作,每次将当前的数改为自己的因数,包括 \(1\) 和自己.写出变成所有因数的概率是相等的.求 \(k\) 次 ...

  9. codeforces1097D Makoto and a Blackboard 数学+期望dp

    题目传送门 题目大意: 给出一个n和k,每次操作可以把n等概率的变成自己的某一个因数,(6可以变成1,2,3,6,并且概率相等),问经过k次操作后,期望是多少? 思路:数学和期望dp  好题好题!! ...

随机推荐

  1. ios广告封装

    代码地址:https://github.com/CoderZhuXH/XHLaunchAd

  2. 微信小程序(一)基本知识初识别

    最近微信圈里小程序很火的样子,以前小程序刚开始的时候研究了一下,多日没关注发现一些东西都淡忘了,最后决定还是记录下来的好.    毕竟好记星比不上烂笔头嘛~

  3. jstl中的日期格式化

    <% String strdate="2004/04/01";   Date a=new Date(strdate);   request.setAttribute(&quo ...

  4. 关于如何在服务器上搭建tomcat并发布自己的web项目

    最近在学习如何在服务起上搭建tomcat,并发布自己的项目,自己是花了一下午的时间才把里面的东西弄明白,各种百度,各种请教大神,真的是备受折磨啊.好了废话不多说,直接进入主题. 1:众所周知,tomc ...

  5. 解决gitosis中authorized_keys不自动更新问题

    1.拷贝一个管理员权限用户的id_rsa.pub到服务器端 这里我拷贝的是yang电脑的key,命令如下: scp  /home/yang/.ssh/id_rsa.pub serveradmin@服务 ...

  6. linux系统学习(一)

    查看linux版本信息:http://distrowatch.com/ linux根目录下系统文件夹的含义 /boot 该目录下默认存放的是linux的启动文件和内核,一般200M swap交换分区, ...

  7. C# 释放资源的规范写法

    static class CSharp_3 { /* ---------------------------------------- * 以下学习资源的释放:IDispose和析构函数 * 1.ID ...

  8. 在Chrome 39中无法使用插件

    在chrome 42+版本中在开启npapi选项.   1.打开插件面板,在地址栏中输入 chrome://plugins   2.找到npScreenCapture插件,点击始终允许选框 3允许控件

  9. 查看HDFS集群信息

    clusterID:集群ID,必须保持一致 1)在NameNode上查看 cat $HADOOP_HOME/dfs/name/current/VERSION #Fri Apr 18 11:56:57 ...

  10. (转)UI设计实战篇——利用Bootstrap框架制作查询页面的界面

    原文地址:http://www.cnblogs.com/grenet/p/3413085.html Bootstrap框架是一个前端UI设计的框架,它提供了统一的UI界面,简化了设计界面UI的过程(缺 ...