CF1097D Makoto and a Blackboard(期望)
题目大意:给您一个数 n, 每次从n的所有约数(包含1、n)中等概率选出一个约数替换n,重复操作k次,求最后结果期望值%1e9+7。
题解:考虑暴力,我们设f(n,k)代表答案,则有f(n,k)=sum_{d|n}f(d,k-1)。f(n,0)=n。
我们发现如果把n分解质因数,最后结果就是所有质因子若干次方结果乘积(f是积性函数)。
分解质因数后,我们设g(n,k)代表p^n次方执行k次的结果,由于n是log级别的,所以可以直接dp了。
最后得到了p^0…p^n的分布,加起来乘到答案里就行了。
代码
#include <cstdio>
using namespace std; const int xkj = 1000000007; long long n, k, tmp;
long long d[30];
int p[30], tot;
int f[60], g[60], inv[60]; int qpow(int x, int y)
{
int res = 1;
for (x %= xkj; y > 0; y >>= 1, x = x * (long long)x % xkj)
if (y & 1) res = res * (long long)x % xkj;
return res;
} int work(long long p, int m)
{
for (int i = 0; i < m; i++) f[i] = 0;
f[m] = 1;
for (int t = 1; t <= k; t++)
{
for (int i = 0; i <= m; i++) g[i] = 0;
for (int i = 0; i <= m; i++)
{
f[i] = f[i] * (long long)inv[i + 1] % xkj;
for (int j = 0; j <= i; j++)
{
g[j] = (g[j] + f[i]) % xkj;
}
}
for (int i = 0; i <= m; i++) f[i] = g[i];
}
int res = 0, tmp = 1; p %= xkj;
for (int j = 0; j <= m; j++) res = (res + f[j] * (long long)tmp % xkj) % xkj, tmp = tmp * p % xkj;
return res;
} int main()
{
scanf("%lld%lld", &n, &k); tmp = n;
for (int i = 0; i < 60; i++) inv[i] = qpow(i, xkj - 2);
for (int i = 2; i * (long long)i <= n; i++)
{
if (tmp % i == 0)
{
d[++tot] = i, p[tot] = 1, tmp /= i;
while (tmp % i == 0) tmp /= i, p[tot]++;
}
}
if (tmp > 1) d[++tot] = tmp, p[tot] = 1;
int ans = 1;
for (int i = 1; i <= tot; i++) ans = ans * (long long)work(d[i], p[i]) % xkj;
printf("%d\n", ans);
return 0;
}
CF1097D Makoto and a Blackboard(期望)的更多相关文章
- cf1097D. Makoto and a Blackboard(期望dp)
题意 题目链接 Sol 首先考虑当\(n = p^x\),其中\(p\)是质数,显然它的因子只有\(1, p, p^2, \dots p^x\)(最多logn个) 那么可以直接dp, 设\(f[i][ ...
- CF1097D Makoto and a Blackboard
题目地址:CF1097D Makoto and a Blackboard 首先考虑 \(n=p^c\) ( \(p\) 为质数)的情况,显然DP: 令 \(f_{i,j}\) 为第 \(i\) 次替换 ...
- CF1097D Makoto and a Blackboard(期望)
[Luogu-CF1097D] 给定 \(n,k\)一共会进行 \(k\) 次操作 , 每次操作会把 \(n\) 等概率的变成 \(n\) 的某个约数 求操作 \(k\) 次后 \(n\) 的期望是多 ...
- CF1097D Makoto and a Blackboard 积性函数、概率期望、DP
传送门 比赛秒写完ABC结果不会D--最后C还fst了qwq 首先可以想到一个约数个数\(^2\)乘上\(K\)的暴力DP,但是显然会被卡 在\(10^{15}\)范围内因数最多的数是\(978217 ...
- CF1097D Makoto and a Blackboard 质因数分解 DP
Hello 2019 D 题意: 给定一个n,每次随机把n换成它的因数,问经过k次操作,最终的结果的期望. 思路: 一个数可以表示为质数的幂次的积.所以对于这个数,我们可以分别讨论他的质因子的情况. ...
- D Makoto and a Blackboard
Makoto and a Blackboard time limit per test 2 seconds memory limit per test 256 megabytes input stan ...
- Codeforces1097D. Makoto and a Blackboard(数论+dp+概率期望)
题目链接:传送门 题目大意: 给出一个整数n写在黑板上,每次操作会将黑板上的数(初始值为n)等概率随机替换成它的因子. 问k次操作之后,留在黑板上的数的期望. 要求结果对109+7取模,若结果不是整数 ...
- 【DP】【CF1097D】 Makoto and a Blackboard
更好的阅读体验 Description 给定一个数 \(n\),对它进行 \(k\) 次操作,每次将当前的数改为自己的因数,包括 \(1\) 和自己.写出变成所有因数的概率是相等的.求 \(k\) 次 ...
- codeforces1097D Makoto and a Blackboard 数学+期望dp
题目传送门 题目大意: 给出一个n和k,每次操作可以把n等概率的变成自己的某一个因数,(6可以变成1,2,3,6,并且概率相等),问经过k次操作后,期望是多少? 思路:数学和期望dp 好题好题!! ...
随机推荐
- Python——字典与字典方法
字典是一种通过名字或者关键字引用的得数据结构,其键可以是数字.字符串.元组,这种结构类型也称之为映射.字典类型是Python中唯一內建的映射类型,基本的操作包括如下: (1)len():返回字典中键— ...
- faster-rcnn目录介绍
data 用来存放pretrained模型,比如imagenet上的,以及读取文件的cache缓存 experiments 存放配置文件以及运行的log文件,另外这个目录下有scripts可以用end ...
- 第一个Django应用程序_part2
一.数据库配置 此文延续第一个Django应用程序_part1. 打开mystic/settings.py.这是一个普通的Python模块,其模块变量表示Django配置 默认情况下,配置使用SQLi ...
- solr 基本命令二(权重查找)
package zr.com.solr.utils; import java.io.IOException; import java.util.HashMap; import java.util.Li ...
- VMware安装完后,没有虚拟网卡
1 问题描述: 1.1 windows10首次安装VMware,或者非首次安装VMware时,安装后,没有出现如下图所示的虚拟网卡: 1.2 Xshell或者SecureCRT 或者editplus等 ...
- Qt Setting Application Icon
Qt4 设置应用程序图标 将一个ico图标放在资源文件夹下; 然后建立txt,输入 IDI_ICON1 DISCARABLE "myico.ico"; 保存文件,将其后缀改为.rc ...
- loadrunner12-错误 -26366: 找不到 web_reg_find 的“Text=19728.00”
转:检查点(web_reg_find函数详解) LR检查点 设置检查点的目的不只是为了验证我们的脚本没有错误,而更重要的是一个规范问题,如何使得测试结果更具有说服力,因此建议所有的测试脚本中都添加检查 ...
- Siverlight MarkerSize 控制数据点半径大小 LineThickness 控制点与点之间直线的厚度
using System;using System.Collections.Generic;using System.Linq;using System.Web;using System.Web.UI ...
- SourceTree 3.0.8 跳过登陆注册
3.0.8普通用户版account.json跳过登陆注册方法已失效,请安装企业版 https://www.sourcetreeapp.com/enterprise 企业版默认安装在 %programf ...
- 白盒测试实践项目(day2)
到目前为止: 李建文同学大体完成代码复审,并在完善文档,汪鸿同学和杨瑞丰同学都在熟悉各自的任务,胡俊辉同学设计了JUnit测试用例,张颖同学负责维护这几天的博客. 目前小组成员还未碰到不能解决的问题. ...