Jack Straws
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 2911   Accepted: 1322

Description

In the game of Jack Straws, a number of plastic or wooden "straws" are dumped on the table and players try to remove them one-by-one without disturbing the other straws. Here, we are only concerned with if various pairs of straws are connected by a path of touching straws. You will be given a list of the endpoints for some straws (as if they were dumped on a large piece of graph paper) and then will be asked if various pairs of straws are connected. Note that touching is connecting, but also two straws can be connected indirectly via other connected straws.

Input

Input consist multiple case,each case consists of multiple lines. The first line will be an integer n (1 < n < 13) giving the number of straws on the table. Each of the next n lines contain 4 positive integers,x1,y1,x2 and y2, giving the coordinates, (x1,y1),(x2,y2) of the endpoints of a single straw. All coordinates will be less than 100. (Note that the straws will be of varying lengths.) The first straw entered will be known as straw #1, the second as straw #2, and so on. The remaining lines of the current case(except for the final line) will each contain two positive integers, a and b, both between 1 and n, inclusive. You are to determine if straw a can be connected to straw b. When a = 0 = b, the current case is terminated.

When n=0,the input is terminated.

There will be no illegal input and there are no zero-length straws.

Output

You should generate a line of output for each line containing a pair a and b, except the final line where a = 0 = b. The line should say simply "CONNECTED", if straw a is connected to straw b, or "NOT CONNECTED", if straw a is not connected to straw b. For our purposes, a straw is considered connected to itself.

Sample Input

7
1 6 3 3
4 6 4 9
4 5 6 7
1 4 3 5
3 5 5 5
5 2 6 3
5 4 7 2
1 4
1 6
3 3
6 7
2 3
1 3
0 0 2
0 2 0 0
0 0 0 1
1 1
2 2
1 2
0 0 0

Sample Output

CONNECTED
NOT CONNECTED
CONNECTED
CONNECTED
NOT CONNECTED
CONNECTED
CONNECTED
CONNECTED
CONNECTED

Source


 
  判断两线段相交 + 并查集
  一开始以为是简单的判断两线段相交问题,提交WA,后来发现还要用到并查集,因为这道题允许2条线段通过其他线段间接的相交,这就要求通过亲戚关系查找2条线段是否在同一集合。我一看正好是下学期数据结构的知识,就趁机熟悉了一遍。自己敲上了并查集的模板,判断两线段相交直接套用了模板,提交AC。
 
  并查集模板
 int UFS_NUM;    //并查集中元素总数
typedef struct node{
int data; //节点对应的编号
int rank; //节点对应秩
int parent; //节点对应的双亲下标
}UFSTree; //并查集树的节点类型
void MAKE_SET(UFSTree t[]) //初始化并查集树
{
int i;
for(i=;i<=UFS_NUM;i++){
t[i].data = i; //数据为该点编号
t[i].rank = ; //秩初始化为0
t[i].parent = i; //双亲初始化为指向自己
}
}
int FIND_SET(UFSTree t[],int x) //在x所在的子树中查找集合编号
{
if(t[x].parent == x) //双亲是自己
return x; //双亲是自己,返回 x
else //双亲不是自己
return FIND_SET(t,t[x].parent); //递归在双亲中查找x
}
void UNION(UFSTree t[],int x,int y) //将x和y所在的子树合并
{
x = FIND_SET(t,x); //查找 x 所在分离集合树的编号
y = FIND_SET(t,y); //查找 y 所在分离集合树的编号
if(t[x].rank > t[y].rank) //y 节点的秩小于 x节点的秩
t[y].parent = x; //将 y 连接到 x 节点上,x 作为 y 的双亲节点
else{ //y 节点的秩大于等于 x 节点的秩
t[x].parent = y; //将 x 连接到 y 节点上,y 作为 x 的双亲节点
if(t[x].rank==t[y].rank) //x 和 y的双亲节点秩相同
t[y].rank++; //y 节点的秩增 1
}
}
 
  题目代码:
 #include <iostream>
using namespace std;
/*--------- 并查集 模板 ------------*/
int UFS_NUM; //并查集中元素总数
typedef struct node{
int data; //节点对应的编号
int rank; //节点对应秩
int parent; //节点对应的双亲下标
}UFSTree; //并查集树的节点类型
void MAKE_SET(UFSTree t[]) //初始化并查集树
{
int i;
for(i=;i<=UFS_NUM;i++){
t[i].data = i;
t[i].rank = ;
t[i].parent = i;
}
}
int FIND_SET(UFSTree t[],int x) //在x所在的子树中查找集合编号
{
if(t[x].parent == x)
return x;
else
return FIND_SET(t,t[x].parent);
}
void UNION(UFSTree t[],int x,int y) //将x和y所在的子树合并
{
x = FIND_SET(t,x);
y = FIND_SET(t,y);
if(t[x].rank > t[y].rank)
t[y].parent = x;
else{
t[x].parent = y;
if(t[x].rank==t[y].rank)
t[y].rank++;
}
} /*--------- 判断两线段相交 模板 ------------*/
const double eps=1e-;
struct point { double x, y; };
double min(double a, double b) { return a < b ? a : b; }
double max(double a, double b) { return a > b ? a : b; }
bool inter(point a, point b, point c, point d){
if ( min(a.x, b.x) > max(c.x, d.x) ||
min(a.y, b.y) > max(c.y, d.y) ||
min(c.x, d.x) > max(a.x, b.x) ||
min(c.y, d.y) > max(a.y, b.y) ) return ;
double h, i, j, k;
h = (b.x - a.x) * (c.y - a.y) - (b.y - a.y) * (c.x - a.x);
i = (b.x - a.x) * (d.y - a.y) - (b.y - a.y) * (d.x - a.x);
j = (d.x - c.x) * (a.y - c.y) - (d.y - c.y) * (a.x - c.x);
k = (d.x - c.x) * (b.y - c.y) - (d.y - c.y) * (b.x - c.x);
return h * i <= eps && j * k <= eps;
} /*---------- 代码实现 -----------*/
struct line
{
point p1;
point p2;
};
int main()
{
int n;
UFSTree t[];
while(cin>>n){
if(n==) break;
UFS_NUM = n;//确定并查集树中元素总数
MAKE_SET(t); //初始化并查集
line l[];
for(int i=;i<=n;i++)
cin>>l[i].p1.x>>l[i].p1.y>>l[i].p2.x>>l[i].p2.y;
for(int i=;i<=n;i++) //根据关系生成关系树
for(int j=;j<=n;j++){
if(i==j) continue;
if(inter(l[i].p1,l[i].p2,l[j].p1,l[j].p2)){ //如果相交,有亲戚关系
UNION(t,i,j); //合并相关集合
}
}
int l1,l2;
while(cin>>l1>>l2){
if(l1== && l2==)
break;
l1 = FIND_SET(t,l1);
l2 = FIND_SET(t,l2);
if(l1 == l2)
cout<<"CONNECTED"<<endl;
else
cout<<"NOT CONNECTED"<<endl;
}
}
return ;
}

poj 1127:Jack Straws(判断两线段相交 + 并查集)的更多相关文章

  1. TOJ1840: Jack Straws 判断两线段相交+并查集

    1840: Jack Straws  Time Limit(Common/Java):1000MS/10000MS     Memory Limit:65536KByteTotal Submit: 1 ...

  2. poj 1127 -- Jack Straws(计算几何判断两线段相交 + 并查集)

    Jack Straws In the game of Jack Straws, a number of plastic or wooden "straws" are dumped ...

  3. hdu 1147:Pick-up sticks(基本题,判断两线段相交)

    Pick-up sticks Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)To ...

  4. POJ 1127 Jack Straws(计算几何)

    题目链接 抄的模版,居然1Y了.就是简单的线段相交+并查集. #include <iostream> #include <cstring> #include <cstdi ...

  5. You can Solve a Geometry Problem too (hdu1086)几何,判断两线段相交

    You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/3276 ...

  6. hdu 1086:You can Solve a Geometry Problem too(计算几何,判断两线段相交,水题)

    You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/3 ...

  7. hdu 1558 线段相交+并查集

    题意:要求相交的线段都要塞进同一个集合里 sol:并查集+判断线段相交即可.n很小所以n^2就可以水过 #include <iostream> #include <cmath> ...

  8. [poj 1127]Jack Straws[线段相交][并查集]

    题意: 给出一系列线段,判断某两个线段是否连通. 思路: 根据线段相交情况建立并查集, 在同一并查集中则连通. (第一反应是强连通分量...实际上只要判断共存即可, 具体的方向啊是没有关系的..) 并 ...

  9. TTTTTTTTTTTTTT poj 1127 Jack Straws 线段相交+并查集

    题意: 有n个木棍,给出木棍的两个端点的x,y坐标,判断其中某两个线段是否连通(可通过其他线段连通) #include <iostream> #include <cstdio> ...

随机推荐

  1. 一个字符串是否在另外一个字符串数组里 Array.Exists 的用法 Array.IndexOf 用法

    转: using System; class Program { static void Main() { string[] array = { "cat", "dot& ...

  2. windows vbs显示桌面命令

      windows vbs显示桌面命令 CreationTime--2018年7月26日11点32分 Author:Marydon Dim shell Set shell = CreateObject ...

  3. Java中被你忽视的四种引用(转)

    转载自:http://blog.csdn.net/u010425776/article/details/50760053 Java的数据类型分为两类:基本数据类型.引用数据类型. 基本数据类型的值存储 ...

  4. Android自动化框架

    Android自动化框架 已有 2085 次阅读2014-8-26 12:19 | Android 几种常见的Android自动化测试框架及其应用 随着Android应用得越来越广,越来越多的公司推出 ...

  5. 用vue开发顶端粘滞效果的页面

    概述 通常一个长的页面,需要滚动浏览,有部分重要信息会随着滚动而看不见,因此需要粘滞在顶端,而又不影响滚动浏览,这个demo基于vue2,实现这个需求. 详细 代码下载:http://www.demo ...

  6. php后台“爬虫”模拟登录第三方系统

    http://blog.csdn.net/liu_c_y/article/details/49956679 http://www.php100.com/html/webkaifa/PHP/PHPyin ...

  7. NPOI workbook.RemoveSheetAt(0); 删除sheet页 次序 sheettmpRequire.CopySheet("Require", true);

    假如workbook的sheet页有多个 要删除第一个第二个 workbook.RemoveSheetAt(0); workbook.RemoveSheetAt(1); 这样写不行 这样写会删除第一个 ...

  8. Netty(四):粘包问题描述及解决

    拆包粘包问题解决 netty使用tcp/ip协议传输数据.而tcp/ip协议是类似水流一样的数据传输方式.多次访问的时候有可能出现数据粘包的问题,解决这种问题的方式如下: 1 定长数据流 客户端和服务 ...

  9. Atitit.软件仪表盘(2)--vm子系统--资源占用监测

    Atitit.软件仪表盘(2)--vm子系统--资源占用监测 1.  Jvisualvm.exe 2. jprofile 3. Heap //permgen   monitor 作者::老哇的爪子At ...

  10. 云中的机器学习:FPGA 上的深度神经网络

    人工智能正在经历一场变革,这要得益于机器学习的快速进步.在机器学习领域,人们正对一类名为“深度学习”算法产生浓厚的兴趣,因为这类算法具有出色的大数据集性能.在深度学习中,机器可以在监督或不受监督的方式 ...