Jack Straws
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 2911   Accepted: 1322

Description

In the game of Jack Straws, a number of plastic or wooden "straws" are dumped on the table and players try to remove them one-by-one without disturbing the other straws. Here, we are only concerned with if various pairs of straws are connected by a path of touching straws. You will be given a list of the endpoints for some straws (as if they were dumped on a large piece of graph paper) and then will be asked if various pairs of straws are connected. Note that touching is connecting, but also two straws can be connected indirectly via other connected straws.

Input

Input consist multiple case,each case consists of multiple lines. The first line will be an integer n (1 < n < 13) giving the number of straws on the table. Each of the next n lines contain 4 positive integers,x1,y1,x2 and y2, giving the coordinates, (x1,y1),(x2,y2) of the endpoints of a single straw. All coordinates will be less than 100. (Note that the straws will be of varying lengths.) The first straw entered will be known as straw #1, the second as straw #2, and so on. The remaining lines of the current case(except for the final line) will each contain two positive integers, a and b, both between 1 and n, inclusive. You are to determine if straw a can be connected to straw b. When a = 0 = b, the current case is terminated.

When n=0,the input is terminated.

There will be no illegal input and there are no zero-length straws.

Output

You should generate a line of output for each line containing a pair a and b, except the final line where a = 0 = b. The line should say simply "CONNECTED", if straw a is connected to straw b, or "NOT CONNECTED", if straw a is not connected to straw b. For our purposes, a straw is considered connected to itself.

Sample Input

7
1 6 3 3
4 6 4 9
4 5 6 7
1 4 3 5
3 5 5 5
5 2 6 3
5 4 7 2
1 4
1 6
3 3
6 7
2 3
1 3
0 0 2
0 2 0 0
0 0 0 1
1 1
2 2
1 2
0 0 0

Sample Output

CONNECTED
NOT CONNECTED
CONNECTED
CONNECTED
NOT CONNECTED
CONNECTED
CONNECTED
CONNECTED
CONNECTED

Source


 
  判断两线段相交 + 并查集
  一开始以为是简单的判断两线段相交问题,提交WA,后来发现还要用到并查集,因为这道题允许2条线段通过其他线段间接的相交,这就要求通过亲戚关系查找2条线段是否在同一集合。我一看正好是下学期数据结构的知识,就趁机熟悉了一遍。自己敲上了并查集的模板,判断两线段相交直接套用了模板,提交AC。
 
  并查集模板
 int UFS_NUM;    //并查集中元素总数
typedef struct node{
int data; //节点对应的编号
int rank; //节点对应秩
int parent; //节点对应的双亲下标
}UFSTree; //并查集树的节点类型
void MAKE_SET(UFSTree t[]) //初始化并查集树
{
int i;
for(i=;i<=UFS_NUM;i++){
t[i].data = i; //数据为该点编号
t[i].rank = ; //秩初始化为0
t[i].parent = i; //双亲初始化为指向自己
}
}
int FIND_SET(UFSTree t[],int x) //在x所在的子树中查找集合编号
{
if(t[x].parent == x) //双亲是自己
return x; //双亲是自己,返回 x
else //双亲不是自己
return FIND_SET(t,t[x].parent); //递归在双亲中查找x
}
void UNION(UFSTree t[],int x,int y) //将x和y所在的子树合并
{
x = FIND_SET(t,x); //查找 x 所在分离集合树的编号
y = FIND_SET(t,y); //查找 y 所在分离集合树的编号
if(t[x].rank > t[y].rank) //y 节点的秩小于 x节点的秩
t[y].parent = x; //将 y 连接到 x 节点上,x 作为 y 的双亲节点
else{ //y 节点的秩大于等于 x 节点的秩
t[x].parent = y; //将 x 连接到 y 节点上,y 作为 x 的双亲节点
if(t[x].rank==t[y].rank) //x 和 y的双亲节点秩相同
t[y].rank++; //y 节点的秩增 1
}
}
 
  题目代码:
 #include <iostream>
using namespace std;
/*--------- 并查集 模板 ------------*/
int UFS_NUM; //并查集中元素总数
typedef struct node{
int data; //节点对应的编号
int rank; //节点对应秩
int parent; //节点对应的双亲下标
}UFSTree; //并查集树的节点类型
void MAKE_SET(UFSTree t[]) //初始化并查集树
{
int i;
for(i=;i<=UFS_NUM;i++){
t[i].data = i;
t[i].rank = ;
t[i].parent = i;
}
}
int FIND_SET(UFSTree t[],int x) //在x所在的子树中查找集合编号
{
if(t[x].parent == x)
return x;
else
return FIND_SET(t,t[x].parent);
}
void UNION(UFSTree t[],int x,int y) //将x和y所在的子树合并
{
x = FIND_SET(t,x);
y = FIND_SET(t,y);
if(t[x].rank > t[y].rank)
t[y].parent = x;
else{
t[x].parent = y;
if(t[x].rank==t[y].rank)
t[y].rank++;
}
} /*--------- 判断两线段相交 模板 ------------*/
const double eps=1e-;
struct point { double x, y; };
double min(double a, double b) { return a < b ? a : b; }
double max(double a, double b) { return a > b ? a : b; }
bool inter(point a, point b, point c, point d){
if ( min(a.x, b.x) > max(c.x, d.x) ||
min(a.y, b.y) > max(c.y, d.y) ||
min(c.x, d.x) > max(a.x, b.x) ||
min(c.y, d.y) > max(a.y, b.y) ) return ;
double h, i, j, k;
h = (b.x - a.x) * (c.y - a.y) - (b.y - a.y) * (c.x - a.x);
i = (b.x - a.x) * (d.y - a.y) - (b.y - a.y) * (d.x - a.x);
j = (d.x - c.x) * (a.y - c.y) - (d.y - c.y) * (a.x - c.x);
k = (d.x - c.x) * (b.y - c.y) - (d.y - c.y) * (b.x - c.x);
return h * i <= eps && j * k <= eps;
} /*---------- 代码实现 -----------*/
struct line
{
point p1;
point p2;
};
int main()
{
int n;
UFSTree t[];
while(cin>>n){
if(n==) break;
UFS_NUM = n;//确定并查集树中元素总数
MAKE_SET(t); //初始化并查集
line l[];
for(int i=;i<=n;i++)
cin>>l[i].p1.x>>l[i].p1.y>>l[i].p2.x>>l[i].p2.y;
for(int i=;i<=n;i++) //根据关系生成关系树
for(int j=;j<=n;j++){
if(i==j) continue;
if(inter(l[i].p1,l[i].p2,l[j].p1,l[j].p2)){ //如果相交,有亲戚关系
UNION(t,i,j); //合并相关集合
}
}
int l1,l2;
while(cin>>l1>>l2){
if(l1== && l2==)
break;
l1 = FIND_SET(t,l1);
l2 = FIND_SET(t,l2);
if(l1 == l2)
cout<<"CONNECTED"<<endl;
else
cout<<"NOT CONNECTED"<<endl;
}
}
return ;
}

poj 1127:Jack Straws(判断两线段相交 + 并查集)的更多相关文章

  1. TOJ1840: Jack Straws 判断两线段相交+并查集

    1840: Jack Straws  Time Limit(Common/Java):1000MS/10000MS     Memory Limit:65536KByteTotal Submit: 1 ...

  2. poj 1127 -- Jack Straws(计算几何判断两线段相交 + 并查集)

    Jack Straws In the game of Jack Straws, a number of plastic or wooden "straws" are dumped ...

  3. hdu 1147:Pick-up sticks(基本题,判断两线段相交)

    Pick-up sticks Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)To ...

  4. POJ 1127 Jack Straws(计算几何)

    题目链接 抄的模版,居然1Y了.就是简单的线段相交+并查集. #include <iostream> #include <cstring> #include <cstdi ...

  5. You can Solve a Geometry Problem too (hdu1086)几何,判断两线段相交

    You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/3276 ...

  6. hdu 1086:You can Solve a Geometry Problem too(计算几何,判断两线段相交,水题)

    You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/3 ...

  7. hdu 1558 线段相交+并查集

    题意:要求相交的线段都要塞进同一个集合里 sol:并查集+判断线段相交即可.n很小所以n^2就可以水过 #include <iostream> #include <cmath> ...

  8. [poj 1127]Jack Straws[线段相交][并查集]

    题意: 给出一系列线段,判断某两个线段是否连通. 思路: 根据线段相交情况建立并查集, 在同一并查集中则连通. (第一反应是强连通分量...实际上只要判断共存即可, 具体的方向啊是没有关系的..) 并 ...

  9. TTTTTTTTTTTTTT poj 1127 Jack Straws 线段相交+并查集

    题意: 有n个木棍,给出木棍的两个端点的x,y坐标,判断其中某两个线段是否连通(可通过其他线段连通) #include <iostream> #include <cstdio> ...

随机推荐

  1. Java之开发工具(1) - Eclipse 如何设置注释的模板

    最常用的注释就是对类的说明和方法的说明,关于这类代码的注释方式,在Eclipse中可以这样进行设置: windows---preferences...---java--code style--code ...

  2. jquery插件制作教程 txtHover(转载)

    http://www.jb51.net/article/31082.htm 该系列文章是我阅读<jQuery Plugin Development Beginner's Guide>后的总 ...

  3. [ASP.NET]使用uploadify上传图片,并在uploadify按钮上生成预览图

    目录 需求 主要代码 总结 需求 项目中有用到uploadify上传插件,给的原型就是上传成功后替换原来的图片.没办法需求在那儿,也不能修改需求吧,只能想办法解决问题了. 主要代码 修改uploadi ...

  4. php类自动载入

    在编写面向对象(OOP) 程序时,很多开发者为每个类新建一个 PHP 文件. 这会带来一个烦恼:每个脚本的开头,都需要包含(include)一个长长的列表(每个类都有个文件). 在 PHP 5 中,已 ...

  5. PHP垃圾回收机制引用计数器概念

    参考: http://www.phpddt.com/php/gc-refcounting-basics.html

  6. 博客已迁移至512z.com

    本博客已迁移至http://blog.512z.com,此处今后不再更新

  7. Lambda编写斐波那契数列

    还需要考虑溢出等问题,闲来无事写了写 Func<float, float, float> a = (arg1, arg2) => 0f;//init ; a = (lastNumbe ...

  8. 关于TimeSpan

    一秒是1000万个tick TimeSpan ts = * ); Console.WriteLine(ts); Console.Read(); //print 00:00:01 并且在TimeSpan ...

  9. AESDK AE中层类型的3种取得方式

    有一部分属于类型标志,比如调节层,空对象层.用mSuites->LayerSuite7()->AEGP_GetLayerFlags去取 而灯光,文字这些信息,直接取类型即可 mSuites ...

  10. spring 发布 Jax-Ws Service (一)

    1.maven依赖: <dependency> <groupId>org.springframework.ws</groupId> <artifactId&g ...