【BZOJ4563】[Haoi2016]放棋子

Description

给你一个N*N的矩阵,每行有一个障碍,数据保证任意两个障碍不在同一行,任意两个障碍不在同一列,要求你在这个矩阵上放N枚棋子(障碍的位置不能放棋子),要求你放N个棋子也满足每行只有一枚棋子,每列只有一枚棋子的限制,求有多少种方案。

Input

第一行一个N,接下来一个N*N的矩阵。N<=200,0表示没有障碍,1表示有障碍,输入格式参考样例

Output

一个整数,即合法的方案数。

Sample Input

2
0 1
1 0

Sample Output

1

题解:傻题。

其实只需要读入n就行。因为障碍矩阵可以看成是一个1到n的排列,最后防棋子的位置也可以看成一个1到n的排列。所以答案就是错排的方案数。只需套用错排的经典公式:f[i]=(i-1)*(f[i-1]+f[i-2])。

然而答案不取模,所以用高精度即可。

#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
int n;
struct node
{
int l,v[110];
node() {memset(v,0,sizeof(v)),l=1;}
node operator + (const node &a) const
{
node b;
b.l=max(l,a.l);
for(int i=1;i<=b.l;i++) b.v[i]+=v[i]+a.v[i],b.v[i+1]=b.v[i]/1000,b.v[i]%=1000;
if(b.v[b.l+1]) b.l++;
return b;
}
node operator * (const int &a) const
{
node b;
b.l=l;
for(int i=1;i<=l;i++) b.v[i]+=v[i]*a,b.v[i+1]=b.v[i]/1000,b.v[i]%=1000;
if(b.v[b.l+1]) b.l++;
return b;
}
}a,b,c;
int main()
{
scanf("%d",&n);
if(!n)
{
printf("0");
return 0;
}
int i;
a.l=b.l=a.v[1]=1;
for(i=1;i<n;i++) c=a,a=b,b=(c+b)*i;
printf("%d",b.v[b.l]);
for(i=b.l-1;i;i--) printf("%03d",b.v[i]);
return 0;
}

【BZOJ4563】[Haoi2016]放棋子 错排+高精度的更多相关文章

  1. bzoj4563: [Haoi2016]放棋子(错排+高精)

    4563: [Haoi2016]放棋子 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 387  Solved: 247[Submit][Status] ...

  2. JZYZOJ1544 [haoi2016T2]放棋子 错排公式 组合数学 高精度

    http://172.20.6.3/Problem_Show.asp?ID=1544&a=ProbNF 看了题解才意识到原题有错排的性质(开始根本不知道错排是什么). 十本不同的书放在书架上. ...

  3. BZOJ4563 HAOI2016放棋子(高精度)

    没看清题还以为是要求数最大匹配数量……注意到任意障碍不在同一行同一列,且恰好有n个障碍,不妨通过交换列使得第i行第i列均有障碍.那么就是个错排了.居然wa了一发简直没救. #include<io ...

  4. BZOJ4563: [Haoi2016]放棋子

    Description 给你一个N*N的矩阵,每行有一个障碍,数据保证任意两个障碍不在同一行,任意两个障碍不在同一列,要求你在 这个矩阵上放N枚棋子(障碍的位置不能放棋子),要求你放N个棋子也满足每行 ...

  5. [Haoi2016]放棋子 题解

    4563: [Haoi2016]放棋子 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 440  Solved: 285[Submit][Status] ...

  6. 洛谷P3182 [HAOI2016]放棋子

    P3182 [HAOI2016]放棋子 题目描述 给你一个N*N的矩阵,每行有一个障碍,数据保证任意两个障碍不在同一行,任意两个障碍不在同一列,要求你在这个矩阵上放N枚棋子(障碍的位置不能放棋子),要 ...

  7. 洛谷 P3182 [HAOI2016]放棋子(高精度,错排问题)

    传送门 解题思路 不会错排问题的请移步——错排问题 && 洛谷 P1595 信封问题 这一道题其实就是求对于每一行的每一个棋子都放在没有障碍的地方的方案数. 因为障碍是每行.每列只有一 ...

  8. [HAOI2016] 放棋子及错排问题

    题目 Description 给你一个N*N的矩阵,每行有一个障碍,数据保证任意两个障碍不在同一行,任意两个障碍不在同一列,要求你在这个矩阵上放N枚棋子(障碍的位置不能放棋子),要求你放N个棋子也满足 ...

  9. 洛谷 P3182 [HAOI2016]放棋子(错排问题)

    题面 luogu 题解 裸的错排问题 错排问题 百度百科:\(n\)个有序的元素应有\(n!\)个不同的排列,如若一个排列使得所有的元素不在原来的位置上,则称这个排列为错排:有的叫重排.如,1 2的错 ...

随机推荐

  1. 连载:面向对象葵花宝典:思想、技巧与实践(35) - NOP原则

    NOP.No Overdesign Priciple.不要过度设计原则. 这应该是你第一次看到这个原则.而且你也不用上网查了,由于这个不是大师们创造的,而是我创造的:) 之所以提出这个原则,是我自己吃 ...

  2. 《开源框架那点事儿23》:採用TinyDB组件方式开发

    採用TinyDB组件方式开发 步骤 Icon 前文介绍四则运算的流程编程开发时,说过流程编排在开发反复功能时.能够利用已有的组件库高速开发.对于开发者而言仅仅须要简单配置流程就能够完毕工作了.开发增删 ...

  3. C#中将图片转化成base64字符串

    厂址:http://www.cnblogs.com/yunfeifei/p/4165351.html 1.在C#中将图片转化成base64字符串: using System; using System ...

  4. nodejs Commander 命令行神器简单示例

    gen.js #!/usr/bin/env node var program = require('commander'); program .version('0.0.1') .option('-C ...

  5. 从JSON数据中取出相关数据

    参考: http://www.cnblogs.com/shuilangyizu/p/6019561.html JSON数据如下: { "total": 1, "rows& ...

  6. vue使用axios,进行网络请求

    1.首先自己创建一个组件: https://www.cnblogs.com/fps2tao/p/9559291.html 2.安装:axios(可以npm安装,也可以下载js引入文件) npm ins ...

  7. Oracle 10g 数据库的备份和还原

    一.备份数据库 1.在图形工具中,如sqldeveloper,pl/sqldeveloper用以下这句查找空表 select 'alter table '||table_name||' allocat ...

  8. Atitit.注重细节还是关注长远??长远优先

    Atitit.注重细节还是关注长远??长远优先 1. 注重细节的误区 1 1.1. 如果连aaa都做不好,那么怎么能够相信你ccc 2 1.2. 一屋不扫何以扫天下??但是扫大街的都是保洁员 2 2. ...

  9. [na]office 2010 2013卸载工具

    http://www.ithome.com/html/soft/32777.htm Office 2003 || Office 2007 || Office 2010.

  10. iOS开发Swift篇—(七)函数

    iOS开发Swift篇—(七)函数 一.函数的定义 (1)函数的定义格式 1 func 函数名(形参列表) -> 返回值类型 { 2 // 函数体... 3 4 } (2)形参列表的格式 形参名 ...