题意:求母串中可以匹配模式串的子串的个数,但是每一位i的字符可以左右偏移k个位置.

分析:类似于 UVALive -4671. 用FFT求出每个字符成功匹配的个数.因为字符可以偏移k个单位,先用尺取法处理出每个位置能够取到的字符.设模式串长度为m.

令\(C(m-1+k) = \sum_{i=0}^{m-1}A_{i+k}*B(m-i-1)\).

反转模式串B, 对每个字符c,若该位上能够取到c,则多项式该位取1,否则为0,FFT求卷积.并记录[m-1,n-1]每个位置4次计算的系数\(C\)之和.

若系数之和=m,表示母串中以位置i结尾,长度为m的字串与B相匹配.

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int MAXN = 4e5 + 10;
const double PI = acos(-1.0);
struct Complex{
double x, y;
inline Complex operator+(const Complex b) const {
return (Complex){x +b.x,y + b.y};
}
inline Complex operator-(const Complex b) const {
return (Complex){x -b.x,y - b.y};
}
inline Complex operator*(const Complex b) const {
return (Complex){x *b.x -y * b.y,x * b.y + y * b.x};
}
} va[MAXN * 2 + MAXN / 2], vb[MAXN * 2 + MAXN / 2];
int lenth = 1, rev[MAXN * 2 + MAXN / 2];
int N, M; // f 和 g 的数量
//f g和 的系数
// 卷积结果
// 大数乘积
int f[MAXN],g[MAXN];
vector<LL> conv;
vector<LL> multi;
//f g
void init()
{
int tim = 0;
lenth = 1;
conv.clear(), multi.clear();
memset(va, 0, sizeof va);
memset(vb, 0, sizeof vb);
while (lenth <= N + M - 2)
lenth <<= 1, tim++;
for (int i = 0; i < lenth; i++)
rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (tim - 1));
}
void FFT(Complex *A, const int fla)
{
for (int i = 0; i < lenth; i++){
if (i < rev[i]){
swap(A[i], A[rev[i]]);
}
}
for (int i = 1; i < lenth; i <<= 1){
const Complex w = (Complex){cos(PI / i), fla * sin(PI / i)};
for (int j = 0; j < lenth; j += (i << 1)){
Complex K = (Complex){1, 0};
for (int k = 0; k < i; k++, K = K * w){
const Complex x = A[j + k], y = K * A[j + k + i];
A[j + k] = x + y;
A[j + k + i] = x - y;
}
}
}
}
void getConv(){ //求多项式
init();
for (int i = 0; i < N; i++)
va[i].x = f[i];
for (int i = 0; i < M; i++)
vb[i].x = g[i];
FFT(va, 1), FFT(vb, 1);
for (int i = 0; i < lenth; i++)
va[i] = va[i] * vb[i];
FFT(va, -1);
for (int i = 0; i <= N + M - 2; i++)
conv.push_back((LL)(va[i].x / lenth + 0.5));
} const int len = 2e5+10; char s1[len],s2[len];
int cnt[4];
int have[MAXN][4];
map<char,int> id;
LL ans[MAXN]; void debug(){
for(int i=0;i<4;++i){
for(int j=0;j<4;++j){
cout<<have[i][j]<<" ";
}
cout<<endl;
}
} int main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
freopen("out.txt","w",stdout);
#endif
int n,m,k;
id['A'] = 0, id['C'] = 1, id['G'] =2, id['T'] = 3;
scanf("%d %d %d",&n,&m,&k );
scanf("%s",s1);
scanf("%s",s2);
int L=0,R=-1;
for(int i=0;i<n;++i){
while(L<i-k) cnt[id[s1[L++]]]--; //退
while(R<n-1 && R<i+k) cnt[id[s1[++R]]]++; //增
for(int j=0;j<4;++j){
if(cnt[j]) have[i][j] = 1;
}
}
for(int k=0;k<4;++k){
N = n, M = m;
for(int i=0;i<N;++i){
if(have[i][k]) f[i] = 1;
else f[i] = 0;
}
for(int i=0;i<M;++i){
if(id[s2[m-i-1]]==k) g[i] = 1;
else g[i] = 0;
}
getConv();
int sz = conv.size();
for(int i=m-1;i<sz;++i){
ans[i]+= conv[i];
}
}
int res=0;
for(int i=m-1;i<n;++i){
if(ans[i]==m){
res++;
}
}
printf("%d\n",res);
return 0;
}

CodeForces - 528D Fuzzy Search (FFT求子串匹配)的更多相关文章

  1. Codeforces.528D.Fuzzy Search(FFT)

    题目链接 \(Descripiton\) 给出文本串S和模式串T和k,S,T为DNA序列(只含\(A,T,G,C\)).对于S中的每个位置\(i\),只要\(s[i-k]\sim s[i+k]\)中有 ...

  2. Codeforces 528D Fuzzy Search(FFT)

    题目 Source http://codeforces.com/problemset/problem/528/D Description Leonid works for a small and pr ...

  3. CodeForces 528D Fuzzy Search 多项式 FFT

    原文链接http://www.cnblogs.com/zhouzhendong/p/8782849.html 题目传送门 - CodeForces 528D 题意 给你两个串$A,B(|A|\geq| ...

  4. codeforces 528D Fuzzy Search

    链接:http://codeforces.com/problemset/problem/528/D 正解:$FFT$. 很多字符串匹配的问题都可以用$FFT$来实现. 这道题是要求在左边和右边$k$个 ...

  5. ●codeforces 528D Fuzzy Search

    题链: http://codeforces.com/problemset/problem/528/D 题解: FFT 先解释一下题意: 给出两个字符串(只含'A','T','C','G'四种字符),一 ...

  6. 2019.01.26 codeforces 528D. Fuzzy Search(fft)

    传送门 fftfftfft好题. 题意简述:给两个字符串s,ts,ts,t,问ttt在sss中出现了几次,字符串只由A,T,C,GA,T,C,GA,T,C,G构成. 两个字符匹配的定义: 当si−k, ...

  7. CF 528D. Fuzzy Search NTT

    CF 528D. Fuzzy Search NTT 题目大意 给出文本串S和模式串T和k,S,T为DNA序列(只含ATGC).对于S中的每个位置\(i\),只要中[i-k,i+k]有一个位置匹配了字符 ...

  8. [Codeforces 580D]Fizzy Search(FFT)

    [Codeforces 580D]Fizzy Search(FFT) 题面 给定母串和模式串,字符集大小为4,给定k,模式串在某个位置匹配当且仅当任意位置模式串的这个字符所对应的母串的位置的左右k个字 ...

  9. CF528D. Fuzzy Search [FFT]

    CF528D. Fuzzy Search 题意:DNA序列,在母串s中匹配模式串t,对于s中每个位置i,只要s[i-k]到s[i+k]中有c就认为匹配了c.求有多少个位置匹配了t 预处理\(f[i][ ...

随机推荐

  1. php7 宏杂记

    php.h                                 zend_api.h ZEND_FN(name) ---> zif_##name PHP_FUNCTION(name) ...

  2. iOS开发之--调用打电话,发邮件,发短信的系统功能的代码

    1.调用 自带mail [[UIApplication sharedApplication] openURL:[NSURL URLWithString:@"mailto://admin@hz ...

  3. leetcode difficulty and frequency distribution chart

    Here is a difficulty and frequency distribution chart for each problem (which I got from the Interne ...

  4. 了解 IMyInterface.Stub

    Service中的IBinder 还记得我们在MyService中利用new IMyInterface.Stub()向上转型成了IBinder然后在onBind方法中返回的.那我们就看看IMyInte ...

  5. jquery表单验证插件 jquery.form.js ------转载

    Form插件,支持Ajax,支持Ajax文件上传,功能强大,基本满足日常应用. 1.JQuery框架软件包下载 文件: jquery.rar 大小: 29KB 下载: 下载 2.Form插件下载 文件 ...

  6. 【POJ2516】Minimum Cost

    [POJ2516]Minimum Cost 题意:有N个收购商.M个供应商.K种物品.对于每种物品,每个供应商的供应量和每个收购商的需求量已知.每个供应商与每个收购商之间运送该物品的运费已知.求满足收 ...

  7. html5文本超出部分用省略号表示

    <p style="overflow:hidden; text-overflow:ellipsis;width:170px; white-space:nowrap; "> ...

  8. Game 游戏开发

    Scut:https://git.oschina.net/scutgame/Scut unity3d:http://unity3d.com/get-unity cocos2d-x:http://www ...

  9. 前端开发 - JQuery&Bootstrap - 总结

    一.JavaScript和Jquery的区别 1.javascript的缺点: 1.书写繁琐,代码量大 2.代码复杂 3.动画效果,很难实现.使用定时器 各种操作和处理 2.定义: 1.Javascr ...

  10. 004-Maven的安装与配置

    1.在Windows上安装Maven 1.1.检查jdk安装 命令行:echo %JAVA_HOME% java -version 1.2.下载Maven 地址:http://maven.apache ...