BZOJ 2301 Problem b (莫比乌斯反演+容斥)
这道题和 HDU-1695不同的是,a,c不一定是1了。还是莫比乌斯的套路,加上容斥求结果。
设\(F(n,m,k)\)为满足\(gcd(i,j)=k(1\leq i\leq n,1\leq j\leq m)\)的对数。则\(ans = F(b,d,k)-F(a-1,d,k)-F(c-1,b,k)+F(a-1,c-1,k)\)
预处理莫比乌斯函数的前缀和,分块加速求和即可
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int maxn=1e5+5;
bool vis[maxn];
int prime[maxn],mu[maxn];
int sum[maxn];
void init(){
memset(vis,false,sizeof(vis));
mu[1] = 1;
prime[0] = 0;
int cnt=0;
for(int i=2;i<maxn;++i){
if(!vis[i]){
mu[i] = -1;
sum[i] = 1;
prime[++cnt] = i;
}
for(int j=1;j<=cnt;++j){
if(i*prime[j] >= maxn) break;
vis[i*prime[j]] = true;
if(i % prime[j]){
mu[i*prime[j]] = -mu[i];
sum[i*prime[j]] = mu[i] - sum[i];
}
else{
mu[i*prime[j]] = 0;
sum[i*prime[j]] = mu[i];
break;
}
}
}
for(int i =2;i<maxn;++i) sum[i]+=sum[i-1];
}
void prepare(){
int i,j,cnt=0;
mu[1]=sum[1]=1;
for(i=2;i<maxn;i++){
if(!vis[i])
prime[++cnt]=i,mu[i]=-1;
for(j=1;prime[j]*i<maxn;j++){
vis[prime[j]*i]=1;
if(i%prime[j]==0){
mu[prime[j]*i]=0;
break;
}
mu[prime[j]*i]=-mu[i];
}
sum[i]=sum[i-1]+mu[i];
}
}
LL gao(LL n,LL m,LL k)
{
if(n>m) swap(n,m);
n/=k,m/=k;
LL ans = 0;
for(LL i = 1,j;i<=n;i=j+1){
j = min(n/(n/i),m/(m/i));
ans += (sum[j]-sum[i-1]) *(n/i) *(m/i);
}
return ans;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
freopen("out.txt","w",stdout);
#endif
prepare();
LL a,b,c,d,k;
int T; scanf("%d",&T);
while(T--){
scanf("%lld %lld %lld %lld %lld",&a,&b,&c,&d,&k);
LL res=0;
res += gao(b,d,k);
res -= gao(a-1,d,k);
res -= gao(c-1,b,k);
res += gao(a-1,c-1,k);
printf("%lld\n",res);
}
return 0;
}
BZOJ 2301 Problem b (莫比乌斯反演+容斥)的更多相关文章
- BZOJ.2301.[HAOI2011]Problem B(莫比乌斯反演 容斥)
[Update] 我好像现在都看不懂我当时在写什么了=-= \(Description\) 求\(\sum_{i=a}^b\sum_{j=c}^d[(i,j)=k]\) \(Solution\) 首先 ...
- BZOJ2301:[HAOI2011]Problem b(莫比乌斯反演,容斥)
Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数 ...
- BZOJ 2301 Problem B(莫比乌斯反演)
http://www.lydsy.com/JudgeOnline/problem.php?id=2301 题意:给a,b,c,d,k,求gcd(x,y)==k的个数(a<=x<=b,c&l ...
- BZOJ 2301 Problem b(莫比乌斯反演+分块优化)
Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数 ...
- 洛谷P2522 [HAOI2011]Problem b (莫比乌斯反演+容斥)
题意:求$\sum_{i=a}^{b}\sum_{j=c}^{d}[gcd(i,j)==k]$(1<=a,b,c,d,k<=50000). 是洛谷P3455 [POI2007]ZAP-Qu ...
- hdu1695(莫比乌斯反演+容斥)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题目是求 在区间[a,b]选一个数x,区间[c,d]选一个数y,求满足gcd(x,y) = k ...
- 2301: [HAOI2011]Problem b ( 分块+莫比乌斯反演+容斥)
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 6015 Solved: 2741[Submit] ...
- 【莫比乌斯反演+容斥】BZOJ2301-[HAOI2011]Problem b(成为权限狗的第一题纪念!)
[题目大意] 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. [思路] “怎么又是你系列……”思路 ...
- 【莫比乌斯反演】关于Mobius反演与gcd的一些关系与问题简化(bzoj 2301 Problem b&&bzoj 2820 YY的GCD&&BZOJ 3529 数表)
首先我们来看一道题 BZOJ 2301 Problem b Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd( ...
随机推荐
- Frameset 两页面互调控件技术案例
总共包含三个页面(Html),分别为Parent.Html.ChildA.Html.ChildB.Html Parent.Html页面代码 <frameset cols="50%,*& ...
- shell脚本学习总结09--分支与循环结构
if 条件语句 = start ]];then echo start app elif [[ $ = stop ]];then echo stop appelif [[ $1 = ... ]];the ...
- Json与数组
今天趁着看源代码的同时,记录学习的小知识. 一.String.Split 方法有6个重载函数: 1) public string[] Split(params char[] separator)2) ...
- poj_3250 单调栈
题目大意 N头牛排成一列,每头牛A都能看到它前面比它矮的牛i,若前面有一个比他高的牛X,则X之前的牛j,A都无法看到.给出N头牛的高度,求出这N头牛可以看到牛的数目的总数. 题目分析 画图之后,可以很 ...
- 使用async/await——Nodejs+ExpressJs+Babel
在使用诸如restify/expressjs等Nodejs Web Framework时,我们最头疼的问题就是回调黑洞. 虽然后又Koa/Koa2号称“The Next Framework”使用co解 ...
- 【BZOJ3622】已经没有什么好害怕的了 容斥+DP
[BZOJ3622]已经没有什么好害怕的了 Description Input Output Sample Input 4 2 5 35 15 45 40 20 10 30 Sample Output ...
- tomcat https 证书生成与配置
第一步:生成证书 命令行输入: keytool -genkeypair -alias "tomcat" -keyalg "RSA" -keystore &quo ...
- 160407、java实现多线程同步
多线程就不说了,很好理解,同步就要说一下了.同步,指两个或两个以上随时间变化的量在变化过程中保持一定的相对关系.所以同步的关键是多个线程对象竞争同一个共享资源. 同步分为外同步和内同步.外同步就是在外 ...
- 修改mysql root的秘密
修改mysql root的秘密 ');
- winform实现QQ聊天气泡200行代码
c# winform实现QQ聊天气泡界面,原理非常简单,通过webKitBrowser(第三方浏览器控件,因为自带的兼容性差)加载html代码实现,聊天界面是一个纯HTML的代码,与QQ的聊天界面可以 ...