洛谷P1876开灯 题解
这道题目是道数学题(下面也写了),所以仔细研究发现:N轮之后,只有是小于N的完全平方数的灯能亮着。所以接下来就好办了:
#include<bits/stdc++.h>
using namespace std;
int n;
int main(){
scanf("%d",&n);
for(int i=;i<=sqrt(n);i++) printf("%d ",i*i);
puts("");return ;
}
洛谷P1876开灯 题解的更多相关文章
- 洛谷 P1876 开灯(思维,枚举,规律题)
P1876 开灯 题目背景 该题的题目是不是感到很眼熟呢? 事实上,如果你懂的方法,该题的代码简直不能再短. 但是如果你不懂得呢?那...(自己去想) 题目描述 首先所有的灯都是关的(注意是关!),编 ...
- 洛谷P1876开灯
题目描述 有n盏灯,一开始全是关闭的.来n个人, 第一个人把一的倍数的灯开着的关上,关上的打开. 第二个人把二的倍数的灯开着的关上,关上的打开. 第三个人把三的倍数的灯开着的关上,关上的打开. ... ...
- 洛谷P1876 开灯
题目背景 该题的题目是不是感到很眼熟呢? 事实上,如果你懂的方法,该题的代码简直不能再短. 但是如果你不懂得呢?那...(自己去想) 题目描述 首先所有的灯都是关的(注意是关!),编号为1的人走过来, ...
- 洛谷 P1876 开灯
传送门 这道题凭什么是! 就因为它代码短?! 还是我太菜了... 第$i$盏灯的开关与否只由其约数个数决定,又有约数公式: 当$n=p_1^{a_1}p_2^{a_2}...p_n^{a_n}$时,约 ...
- 【洛谷】P1876 开灯
P1876 开灯 题目背景 该题的题目是不是感到很眼熟呢? 事实上,如果你懂的方法,该题的代码简直不能再短. 但是如果你不懂得呢?那...(自己去想) 题目描述 首先所有的灯都是关的(注意是关!),编 ...
- 【洛谷P3960】列队题解
[洛谷P3960]列队题解 题目链接 题意: Sylvia 是一个热爱学习的女孩子. 前段时间,Sylvia 参加了学校的军训.众所周知,军训的时候需要站方阵. Sylvia 所在的方阵中有 n×m ...
- 洛谷 P1220 关路灯 题解
Description 有 $n$ 盏路灯,每盏路灯有坐标(单位 $m$)和功率(单位 $J$).从第 $c$ 盏路灯开始,可以向左或向右关闭路灯.速度是 $1m/s$.求所有路灯的最少耗电.输入保证 ...
- 洛谷P2832 行路难 分析+题解代码【玄学最短路】
洛谷P2832 行路难 分析+题解代码[玄学最短路] 题目背景: 小X来到了山区,领略山林之乐.在他乐以忘忧之时,他突然发现,开学迫在眉睫 题目描述: 山区有n座山.山之间有m条羊肠小道,每条连接两座 ...
- 洛谷P2312 解方程题解
洛谷P2312 解方程题解 题目描述 已知多项式方程: \[a_0+a_1x+a_2x^2+\cdots+a_nx^n=0\] 求这个方程在 \([1,m]\) 内的整数解(\(n\) 和 \(m\) ...
随机推荐
- 【贪心】【P5078】Tweetuzki 爱军训
Description Tweetuzki 所在的班级有 \(n\) 名学生,座号从 \(1\) 到 \(n\).有一次,教官命令班上的 \(n\) 名学生按照座号顺序从左到右排成一排站好军姿,其中 ...
- Git之安装及使用
学习使用Git来管理平时自己写的demo代码和阅读的一些源码,因为一直在windows中操作所以开始学习用Git Bash操作在github上的代码.git命令和svn命令是很相似的,我觉得没有必要把 ...
- python学习(十三)进程和线程
python多进程 from multiprocessing import Process import os def processFunc(name): print("child pro ...
- python 获取文件md5
def GetFileMd5(filename): if not os.path.isfile(filename): return myhash = hashlib.md5() f = file(fi ...
- 调整的R方_如何选择回归模型
sklearn实战-乳腺癌细胞数据挖掘(博客主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005269003&a ...
- [DeeplearningAI笔记]卷积神经网络1.2-1.3边缘检测
4.1卷积神经网络 觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.2边缘检测示例 边缘检测可以视为横向边缘检测和纵向边缘检测如下图所示: 边缘检测的原理是通过一个特定构造的卷积核对原始图 ...
- ZOJ 3774 二次剩余
LINK 题意:简单粗暴,求菲波那契数列每个数的m次的前n项和模1e9+7 思路:斐波那契通项式, 注意到有很多根号5,求二次剩余为5模1e9+7的解,显然我们可以直接找一个(383008016),然 ...
- Anagrams by Stack(深度优先搜索)
ZOJ Problem Set - 1004 Anagrams by Stack Time Limit: 2 Seconds Memory Limit: 65536 KB How can a ...
- CentOS部署.NetCore服务
1. 安装CentOs,可使用最小安装包镜像:http://isoredirect.centos.org/centos/7/isos/x86_64/CentOS-7-x86_64-Minimal-17 ...
- MDI窗体简单方法(调用,闪屏)
调用方式: RibbonForm mdishow = new RibbonForm(); //实例化 midshow.MdiParent = this; //设置在主窗体,以MDI的方式显示,关键属性 ...