Description:

  上一篇blog.

Solution:

  同样我们可以用fft来做...就像上次写的那道3-idoit一样,对a做k次卷积就好了.

  同样有许多需要注意的地方:我们只是判断可行性,所以为了保证精度如果f大于1就把它变成1; 对于长度也可以慢慢倍增,可以优化复杂度就是写起来麻烦.

  

void change(complex y[],int len)
{
int i,j,k;
for(i = 1, j = len/2;i < len-1; i++)
{
if(i < j)swap(y[i],y[j]);
k = len/2;
while( j >= k)
{
j -= k;
k /= 2;
}
if(j < k) j += k;
}
}
void fft(complex y[],int len,int on)
{
change(y,len);
for(int h = 2; h <= len; h <<= 1)
{
complex wn(cos(-on*2*PI/h),sin(-on*2*PI/h));
for(int j = 0;j < len;j+=h)
{
complex w(1,0);
for(int k = j;k < j+h/2;k++)
{
complex u = y[k];
complex t = w*y[k+h/2];
y[k] = u+t;
y[k+h/2] = u-t;
w = w*wn;
}
}
}
if(on == -1)
for(int i = 0;i < len;i++)
y[i].r /= len;
}
const int maxn = 2e6+5;
complex x1[maxn], x2[maxn];
int a[maxn], b[maxn];
void cal(int *a, int *b, int &lena, int &lenb) {
int len = 1;
while(len<lena+lenb)
len<<=1;
for(int i = 0; i<=lenb; i++) {
x1[i] = complex(b[i], 0);
}
for(int i = lenb+1; i<len; i++)
x1[i] = complex(0, 0);
for(int i = 0; i<=lena; i++) {
x2[i] = complex(a[i], 0);
}
for(int i = lena+1; i<len; i++)
x2[i] = complex(0, 0);
fft(x1, len, 1);
fft(x2, len, 1);
for(int i = 0; i<len; i++)
x1[i] = x1[i]*x2[i];
fft(x1, len, -1);
for(int i = 0; i<=lena+lenb; i++)
b[i] = (int)(x1[i].r+0.5);
for(int i = 0; i<=lena+lenb; i++)
if(b[i]>0)
b[i] = 1;
lenb += lena;
}
int main()
{
int n, k, x;
cin>>n>>k;
for(int i = 0; i<n; i++) {
scanf("%d", &x);
a[x]++;
}
b[0] = 1;
int lena = 1000, lenb = 0;
while(k) {
if(k&1) {
cal(a, b, lena, lenb);
}
if(k>1) {
cal(a, a, lena, lena);
}
k>>=1;
}
for(int i = 0; i<=lena+lenb; i++) {
if(b[i]) {
printf("%d ", i);
}
}
cout<<endl;
return 0;
}

ECF R9(632E) & FFT的更多相关文章

  1. ECF R9(632E) & DP

    Description: 给你$n$个数可以任取$k$个(可重复取),输出所有可能的和. $n \leq 1000,a_i \leq 1000$ Solution: 好神的DP,我们排序后把每个数都减 ...

  2. codeforces 632E. Thief in a Shop fft

    题目链接 E. Thief in a Shop time limit per test 5 seconds memory limit per test 512 megabytes input stan ...

  3. CodeForces - 632E Thief in a Shop (FFT+记忆化搜索)

    题意:有N种物品,每种物品有价值\(a_i\),每种物品可选任意多个,求拿k件物品,可能损失的价值分别为多少. 分析:相当于求\((a_1+a_2+...+a_n)^k\)中,有哪些项的系数不为0.做 ...

  4. FFT(快速傅里叶变换):HDU 5307 He is Flying

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAA8IAAAPeCAIAAABInTQaAAAgAElEQVR4nOy9fZReVXk3vP8ia+HqCy

  5. 并行计算提升32K*32K点(32位浮点数) FFT计算速度(4核八线程E3处理器)

    对32K*32K的随机数矩阵进行FFT变换,数的格式是32位浮点数.将产生的数据存放在堆上,对每一行数据进行N=32K的FFT,记录32K次fft的时间. 比较串行for循环和并行for循环的运行时间 ...

  6. 【BZOJ-2179&2194】FFT快速傅里叶&快速傅里叶之二 FFT

    2179: FFT快速傅立叶 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2978  Solved: 1523[Submit][Status][Di ...

  7. 为什么FFT时域补0后,经FFT变换就是频域进行内插?

    应该这样来理解这个问题: 补0后的DFT(FFT是DFT的快速算法),实际上公式并没变,变化的只是频域项(如:补0前FFT计算得到的是m*2*pi/M处的频域值, 而补0后得到的是n*2*pi/N处的 ...

  8. FFT NNT

    算算劳资已经多久没学新算法了,又要重新开始学辣.直接扔板子,跑...话说FFT算法导论里讲的真不错,去看下就懂了. //FFT#include <cstdio> #include < ...

  9. CC countari & 分块+FFT

    题意: 求一个序列中顺序的长度为3的等差数列. SOL: 对于这种计数问题都是用个数的卷积来进行统计.然而对于这个题有顺序的限制,不好直接统计,于是竟然可以分块?惊为天人... 考虑分块以后的序列: ...

随机推荐

  1. Https方式使用Git@OSC设置密码的方式

    Https方式使用Git@OSC设置密码的方式 62561_silentboy Zoker3 years ago member https方式每次都要输入密码,按照如下设置即可输入一次就不用再手输入密 ...

  2. AMD电脑装完Winsows10后开机蓝屏,报错代码:cdmsnroot_s.sys

    背景:今天装了个WIN10,电脑配置:联想 IdeaPad   Z485      : AMD   A8处理器      .完成安装后电脑没有问题,安装了驱动程序后将           电脑用360 ...

  3. CI模板加载css和js

    1.需求 ci无法加载css和js文件. 2.解决 删除..htaccess文件. 在config目录下配置base_url,并传给页面 $base_url = $this->config-&g ...

  4. 天河微信小程序入门《三》:打通任督二脉,前后台互通

    原文链接:http://www.wxapp-union.com/forum.php?mod=viewthread&tid=505&extra=page%3D1 天河君在申请到https ...

  5. .htaccess中Apache配置详解

    1.<IfDefine> 指令 说明 封装一组只有在启动时当测试结果为真时才生效的指令 语法 <IfDefine [!]parameter-name> ... </IfD ...

  6. Robot Framework用户手册 (版本:3.0)

    版权信息:诺基亚网络和解决中心 本翻译尊重原协议,仅用于个人学习使用 1.开始: 1.1 介绍: Robot Framework是一个基于Python的,为终端测试和验收驱动开发(ATDD)的可扩展的 ...

  7. nginx访问量统计

    1.根据访问IP统计UV awk '{print $1}'  access.log|sort | uniq -c |wc -l 2.统计访问URL统计PV awk '{print $7}' acces ...

  8. jquery mobile

    页面:data-role="page"  header.content.fooder 过渡:data-transition ="slide"  反向过渡:dat ...

  9. 解决springmvc报No converter found for return value of type: class java.util.ArrayList问题

    一.背景 最近闲来无事,想自己搭建一套Spring+SpringMVC+Mybatis+Mysql的环境(搭建步骤会在以后博客中给出),结果运行程序时,适用@ResponseBody注解进行返回Lis ...

  10. Java笔记:文件夹操作

    创建目录: File类中有两个方法可以用来创建文件夹: mkdir( )方法创建一个文件夹,成功则返回true,失败则返回false.失败表明File对象指定的路径已经存在,或者由于整个路径还不存在, ...