P3620 [APIO/CTSC 2007]数据备份

题目描述

你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份。然而数据备份的工作是枯燥乏味的,因此你想设计一个系统让不同的办公楼彼此之间互相备份,而你则坐在家中尽享计算机游戏的乐趣。

已知办公楼都位于同一条街上。你决定给这些办公楼配对(两个一组)。每一对办公楼可以通过在这两个建筑物之间铺设网络电缆使得它们可以互相备份。

然而,网络电缆的费用很高。当地电信公司仅能为你提供 K 条网络电缆,这意味着你仅能为 K 对办公楼(或总计 2K 个办公楼)安排备份。任一个办公楼都属于唯一的配对组(换句话说,这 2K 个办公楼一定是相异的)。

此外,电信公司需按网络电缆的长度(公里数)收费。因而,你需要选择这 K对办公楼使得电缆的总长度尽可能短。换句话说,你需要选择这 K 对办公楼,使得每一对办公楼之间的距离之和(总距离)尽可能小。

下面给出一个示例,假定你有 5 个客户,其办公楼都在一条街上,如下图所示。这 5 个办公楼分别位于距离大街起点 1km, 3km, 4km, 6km 和 12km 处。电信公司仅为你提供 K=2 条电缆。

上例中最好的配对方案是将第 1 个和第 2 个办公楼相连,第 3 个和第 4 个办公楼相连。这样可按要求使用 K=2 条电缆。第 1 条电缆的长度是 3km―1km = 2km,第 2 条电缆的长度是 6km―4km = 2 km。这种配对方案需要总长 4km 的网络电缆,满足距离之和最小的要求。


和种树那题一样,这次要用小根堆,每次取最小值,同时加入后悔机制(见这里

种树那题边界问题在这题得到了体现:我们需要在第0个和最后一个赋一个极大值,去除对答案的影响

Code

#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#include<algorithm>
#include<climits>
typedef long long LL;
using namespace std;
LL RD(){
LL out = 0,flag = 1;char c = getchar();
while(c < '0' || c >'9'){if(c == '-')flag = -1;c = getchar();}
while(c >= '0' && c <= '9'){out = out * 10 + c - '0';c = getchar();}
return flag * out;
}
const int maxn = 5000019,INF = 1e9 + 19;
struct Node{
LL val,index;
Node (int val, int index):val(val), index(index){}
Node(){}
bool operator < (const Node &a)const{return val > a.val;}
}I[maxn];
priority_queue<Node>Q;
LL num,k;
LL ori[maxn];
LL a[maxn];
bool used[maxn];
LL ans;
int l[maxn],r[maxn];
int main(){
num = RD();k = RD();
for(int i = 1;i <= num;i++)ori[i] = RD();
for(int i = 1;i <= num - 1;i++){
l[i] = i - 1,r[i] = i + 1;
a[i] = ori[i + 1] - ori[i];
Q.push(Node(a[i],i));
}
a[0] = a[num] = INF;//去除影响
while(k--){
while(used[Q.top().index])Q.pop();
Node now = Q.top();Q.pop();
if(now.val < 0)break;
ans += now.val;
int p = now.index;
a[p] = a[l[p]] + a[r[p]] - a[p];
Q.push(Node(a[p],p));
used[l[p]] = used[r[p]] = 1;
l[p] = l[l[p]],r[p] = r[r[p]];
r[l[p]] = p,l[r[p]] = p;
}
printf("%lld\n",ans);
return 0;
}

P3620 [APIO/CTSC 2007]数据备份的更多相关文章

  1. 洛谷 P3620 [APIO/CTSC 2007]数据备份 解题报告

    P3620 [APIO/CTSC 2007]数据备份 题目描述 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味的,因此你想设计一个系统让不同 ...

  2. 洛谷P1484 种树&洛谷P3620 [APIO/CTSC 2007]数据备份 题解(堆+贪心)

    洛谷P1484 种树&洛谷P3620 [APIO/CTSC 2007]数据备份 题解(堆+贪心) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/132 ...

  3. 洛谷P3620 [APIO/CTSC 2007] 数据备份 [堆,贪心,差分]

    题目传送门 题目描述 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味的,因此你想设计一个系统让不同的办公楼彼此之间互相备份,而你则坐在家中尽 ...

  4. P3620 [APIO/CTSC 2007]数据备份[优先队列+贪心]

    题目描述 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味的,因此你想设计一个系统让不同的办公楼彼此之间互相备份,而你则坐在家中尽享计算机游戏 ...

  5. 洛谷P3620 [APIO/CTSC 2007] 数据备份

    题目 贪心+堆. 一般贪心题用到堆的时候都会存在一种反悔操作,因此这个题也不例外. 首先电缆一定是连接两个相邻的点的,这很好证明,其次一个点只能被一条电缆连接,所以我们通过选这个电缆,不选相邻电缆和选 ...

  6. luogu P3620 [APIO/CTSC 2007]数据备份

    luogu 首先如果一条线不是了连接的相邻两个位置一定不优,把它拆成若干连接相邻位置的线.所以现在问题是有\(n\)个物品,选\(k\)个,要求选的位置不能相邻,求最小总和 如果没有选的位置不能相邻这 ...

  7. 洛谷$P3620\ [APIO/CTSC 2007]$数据备份 贪心

    正解:贪心 解题报告: 传送门$QwQ$ $umm$感觉这种问题还蛮经典的,,,就选了某个就不能选另一个这样儿,就可以用堆模拟反悔操作 举个$eg$,如果提出了$a_i$,那就$a_{i-1}$和$a ...

  8. 题解:[APIO/CTSC 2007]数据备份

    你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味的,因此你想设计一个系统让不同的办公楼彼此之间互相备份,而你则坐在家中尽享计算机游戏的乐趣.已 ...

  9. [luogu3620][APIO/CTSC 2007]数据备份【贪心+堆+链表】

    题目描述 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味的,因此你想设计一个系统让不同的办公楼彼此之间互相备份,而你则坐在家中尽享计算机游戏 ...

随机推荐

  1. JQuery点击打开再点击关闭

    $("#03").click(function() { $("#03").show(speed); $("#03").css("c ...

  2. linux 性能分析命令及其解释

    很多时候,我们需要对linux上运行的环境大体有一个了解,那么久需要大体知道当前系统的相关资源的使用情况,那么可以用一些linux提供的丰富的命令来查看 性能分析 vmstat 虚拟内存统计 用法 U ...

  3. 软件工程-东北师大站-第四次作业PSP

    1.本周PSP 2.本周进度条 3.本周累计进度图 代码累计折线图 博文字数累计折线图 4.本周PSP饼状图

  4. Java:类集框架中集合的学习

    Java:类集框架中集合的学习 集合 Java:Set的学习 Set是类集框架中的集合类.集合是不按特定的方式排序,并且没有重复对象的一种类. Q:Set如何操作?Set中的不按特定方式排序是怎么排序 ...

  5. 把字符串"3,1,2,4"以","分割拆分为数组,数组元素并按从小到大的顺序排列

    package com.wangcf; /** * 把字符串"3,1,2,4"以","分割拆分为数组,数组元素并按从小到大的顺序排列 * @author fan ...

  6. CS小分队第二阶段冲刺站立会议(5月29日)

    昨日成果:昨天在为主界面设计自主添加应用快捷方式功能,连续遇到困难. 遇到的困难:1.string字符串数组无法在单击事件中使用,提示string无法在eventargs中检索,尝试了各种方式都不行 ...

  7. 通过一台服务器ssh多台主机远程修改网卡ip

    在多台服务器环境下,更改所有的ip地址,网关,一台一台的登录修改显得复杂繁琐.   知识点: 参考#https://www.cnblogs.com/youngerger/p/9104144.html ...

  8. 【第二周】Java实现英语文章词频统计(改进1)

    本周根据杨老师的spec对英语文章词频统计进行了改进 1.需求分析: 对英文文章中的英文单词进行词频统计并按照有大到小的顺序输出, 2.算法思想: (1)构建一个类用于存放英文单词及其出现的次数 cl ...

  9. react-自定义事件

    没有嵌套关系的组件(如兄弟组件)之间的通信,只能通过自定义事件的方式来进行. var EventEmitter = require('events').EventEmitter; import Rea ...

  10. MySQL---索引算法B+/B-树原理(二)

    B+/-Tree原理 B-Tree介绍 B-Tree是一种多路搜索树(并不是二叉的):        1.定义任意非叶子结点最多只有M个儿子:且M>2:        2.根结点的儿子数为[2, ...