[LOJ6261]一个人的高三楼
description
给你一个长度为\(n\)的数列\(a_i\),求它的\(k\)次前缀和模\(998244353\)。(就是做\(k\)次前缀和后的数列)
\(n\le10^5,k\le2^{60}\)。
sol
设\(F_t(x)\)表示数列在做过\(t\)次前缀和之后的生成函数。
尝试构造一个函数\(G(x)\),满足\(F_t(x)G(x)\equiv F_{t+1}(x) \mod x^n\)。
发现\(G(x)=\sum_{i=0}^{n}x^i\)。
所以有\(F_k(x)=F_0(x)G^k(x)\)。直接多项式快速幂即可,理论复杂度\(O(n\log n)\)。(用多项式\(\ln\)多项式\(\exp\)那套理论就可以做到复杂度与\(k\)无关)
以上那种方法我没写,谁来写一写看看能不能跑得过去吧。
考虑一下上式的组合意义。因为\(G(x)\)的每一项都是\(1\),那么\([x^i]G^k(x)\)相当于从\(k\)个盒子里取出若干个球使取出来的总数为\(i\)的方案数。在这里认为盒子不同而球相同。而这个方案数显然是可以组合算的,用隔板法即可。
也就是说,\(G^k(x)=\sum_{i=0}^{n}\binom{i+k-1}{k-1}x^i\)。
发现\(k\)非常大不好预处理组合数。考虑组合数的一个同层的递推式:\(\binom{n+1}{m}=\binom{n}{m}\times\frac{n+1}{n-m+1}\)。
所以直接递推即可,复杂度\(O(n\log n)\)。
code
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
int gi(){
int x=0,w=1;char ch=getchar();
while ((ch<'0'||ch>'9')&&ch!='-') ch=getchar();
if (ch=='-') w=0,ch=getchar();
while (ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return w?x:-x;
}
const int N = 4e5+5;
const int mod = 998244353;
int n,k,len,rev[N],l,og[N],a[N],b[N];
int fastpow(int a,int b){
int res=1;
while(b){if(b&1)res=1ll*res*a%mod;a=1ll*a*a%mod;b>>=1;}
return res;
}
void ntt(int *P,int opt){
for (int i=0;i<len;++i) if (i<rev[i]) swap(P[i],P[rev[i]]);
for (int i=1;i<len;i<<=1){
int W=fastpow(3,(mod-1)/(i<<1));
if (opt==-1) W=fastpow(W,mod-2);
og[0]=1;for (int j=1;j<i;++j) og[j]=1ll*og[j-1]*W%mod;
for (int p=i<<1,j=0;j<len;j+=p)
for (int k=0;k<i;++k){
int x=P[j+k],y=1ll*og[k]*P[j+k+i]%mod;
P[j+k]=(x+y)%mod,P[j+k+i]=(x-y+mod)%mod;
}
}
if (opt==-1) for (int i=0,Inv=fastpow(len,mod-2);i<len;++i) P[i]=1ll*P[i]*Inv%mod;
}
int main(){
n=gi();long long tmp;scanf("%lld",&tmp);k=tmp%mod;
for (int i=1;i<=n;++i) a[i]=gi();
b[0]=1;
for (int i=1;i<=n;++i) b[i]=1ll*b[i-1]*(i+k-1)%mod*fastpow(i,mod-2)%mod;
for (len=1;len<=n+n;len<<=1) ++l;--l;
for (int i=0;i<len;++i) rev[i]=(rev[i>>1]>>1)|((i&1)<<l);
ntt(a,1);ntt(b,1);
for (int i=0;i<len;++i) a[i]=1ll*a[i]*b[i]%mod;
ntt(a,-1);
for (int i=1;i<=n;++i) printf("%d\n",a[i]);return 0;
}
[LOJ6261]一个人的高三楼的更多相关文章
- BZOJ3028 食物 和 LOJ6261 一个人的高三楼
总结一下广义二项式定理. 食物 明明这次又要出去旅游了,和上次不同的是,他这次要去宇宙探险!我们暂且不讨论他有多么NC,他又幻想了他应该带一些什么东西.理所当然的,你当然要帮他计算携带N件物品的方案数 ...
- loj #6261 一个人的高三楼 FFT + 组合数递推
\(\color{#0066ff}{ 题目描述 }\) 一天的学习快要结束了,高三楼在晚自习的时候恢复了宁静. 不过,\(HSD\) 桑还有一些作业没有完成,他需要在这个晚自习写完.比如这道数学题: ...
- XJOI 夏令营501-511NOIP训练18 高三楼
参观完各种饭堂,学校还有什么著名的景点呢?当然是教室了,此时此刻我 们来到了高三楼.你会发现高三楼门口会有以身份认证系统,这东西还有着一段疼人的历史.每年的九月到来,高三的童鞋大多不习惯学校的作息时间 ...
- 【NTT】loj#6261. 一个人的高三楼
去年看过t老师写这题博客:以为是道神仙题 题目大意 求一个数列的$k$次前缀和.$n\le 10^5$. 题目分析 [计数]cf223C. Partial Sums 加强版.注意到最后的式子是$f_i ...
- LOJ #6261 一个人的高三楼
生成函数和组合数学的灵活应用 LOJ #6261 题意:求一个数列的$ k$次前缀和 $ Solution:$ 我们对原数列$ a$建生成函数$ A=\sum\limits_{i=0}^{n-1} a ...
- loj#6261. 一个人的高三楼(NTT+组合数学)
题面 传送门 题解 统计\(k\)阶前缀和,方法和这题一样 然后这里\(n\)比较大,那么把之前的柿子改写成 \[s_{j,k}=\sum_{i=1}^ja_i{j-i+k-1\choose j-i} ...
- 夏令营501-511NOIP训练18——高三楼
传送门:QAQQAQ 题意:定义矩阵A与矩阵B重复,当且仅当A可以通过任意次行列交换得到B,例如下图A,B即为合法矩阵 现求对于$n*n$的矩阵有多少个不重复的矩阵 数据范围: 对于10%的数据 N≤ ...
- 「loj#6261」一个人的高三楼
题目 显然存在一个这样的柿子 \[S^{(k)}_i=\sum_{j=1}^iS^{(k-1)}_j\] 我们可以视为\(S^{(k)}\)就是由\(S^{(k-1)}\)卷上一个长度为\(n\)全是 ...
- ZJOI2019一轮停课刷题记录
Preface 菜鸡HL终于狗来了他的省选停课,这次的时间很长,暂定停到一试结束,不过有机会二试的话还是可以搞到4月了 这段时间的学习就变得量大而且杂了,一般以刷薄弱的知识点和补一些新的奇怪技巧为主. ...
随机推荐
- 数据库建表char(10)和VARCHAR(10)
1.CHAR的长度是固定的,而VARCHAR2的长度是可以变化的, 比如,存储字符串“abc",对于CHAR (10),表示你存储的字符将占10个字节(包括7个空字符),而同样的VARCHA ...
- spring mvc: rss(xml)输出
准备: rss包插件 Rome 库及其依赖项rome-utils,jdom和slf4j <!-- rss源依赖 --> <!-- https://mvnrepository.com/ ...
- Unity教程之-UGUI一个优化效率小技巧
无意间发现了一个小技巧.如下图所示,可以发现UGUI的Image组件的RaycastTarget勾选以后会消耗一些效率,为了节省效率就不要勾选它了,不仅Image组件Text组件也有这样的问题. 一般 ...
- Stretch的Uniform和UniformToFill
通俗理解Stretch的Uniform和UniformToFill: Uniform,控件的高度和宽度会增加直到达到了容器的大小,也就是说控件的大小和容器的大小是有关系的,同时如果给控件设置了明确的高 ...
- Visual Studio 2017 序列号 Key 激活码 VS2017 注册码
Visual Studio 2017(VS2017) 企业版 Enterprise 注册码 序列号:NJVYC-BMHX2-G77MM-4XJMR-6Q8QF Visual Studio 2017(V ...
- 微信小程序------基本组件
今天主要是简单的讲一下小程序当中的一些组件,微信文档上也是有的.但我还是坚持写一下,因为写博客可以再一次得到提高,印象更深刻,虽然很简单,但贵在坚持. 先来看看效果图: 1:进度条(progress) ...
- torch Tensor学习:切片操作
torch Tensor学习:切片操作 torch Tensor Slice 一直使用的是matlab处理矩阵,想从matlab转到lua+torch上,然而在matrix处理上遇到了好多类型不匹配问 ...
- Linux中pid_t类型为int类型
1. 查看man手册,找到pid_t,可以通过getpid函数来看 2. 打开sys/types.h 3. 打开bits/types.h 4. 打开bits/typesizes.h 找不到相关的头文件 ...
- Find the Longest Word in a String
找到提供的句子中最长的单词,并计算它的长度. 函数的返回值应该是一个数字. 这是一些对你有帮助的资源: String.split() String.length 第一种想法就是,先定一个小变量,来他一 ...
- 010——数组(十)compact extract in_array
<?php /** 10 数组 compact extract in_array */ //compact() (紧凑的,简洁的) 将变量转换为数组,变量名为数组键名,变量值为数组的键值. /* ...