dda的fpga实现(转载)
The general approach using DDAs will be to simulate a system of first-order differential equations, which can be nonlinear. Analog computers use operational amplifiers to do mathematical integration. We will use digital summers and registers. For any set of differential equations with state variables v1 to vm:
dv1/dt = f1(t,v1,v2,v3,...vm)
dv2/dt = f2(t,v1,v2,v3,...vm)
dv3/dt = f3(t,v1,v2,v3,...vm)
...dvm/dt = fm(...)
We will build the following circuitry to perform an Euler integration approximation to these equations in the form
v1(n+1) = v1(n) + dt*(f1(t,v1(n),v2(n),v3(n),...vm(n))
v2(n+1) = v2(n) + dt*(f2(t,v1(n),v2(n),v3(n),...vm(n))
v3(n+1) = v3(n) + dt*(f3(t,v1(n),v2(n),v3(n),...vm(n))
...
vm(n+1) = vm(n) + dt*(fm(...))
Where the variable values at time step n are updated to form the values at time step n+1. Each equation will require one integrator. The multiply may be replaced by a shift-right if dt is chosen to be a power of two. Most of the design complexity will be in calculating F(t,V(n)). 
We also need a number representation. I chose 18-bit 2's complement with the binary point between bits 15 and 16 (with bit zero being the least significant). Bit 17 is the sign bit. The number range is thus -2.0 to +1.999985. This range fits well with the Audio codec which requires 16-bit 2's complement for output to the DAC. Conversion from the 18-bit to 16-bit just requires truncating the least significant two bits ([1:0]). A few numbers are shown in the table below. Note that the underscore character in the hexidecimal form is allowed in verilog to improve readability.
|
Decimal number
|
18-bit 2's comp |
|
1.0
|
18'h1_0000
|
|
0.5
|
18'h0_8000
|
|
0.25
|
18'h0_4000
|
|
0
|
18'h0_0000
|
|
-0.25
|
18'h3_c000
|
|
-0.5
|
18'h3_8000
|
|
-1.0
|
18'h3_0000
|
|
-1.5
|
18'h2_8000
|
|
-2.0
|
18'h2_0000
|
Second order system (damped spring-mass oscillator):
As an example, consider the linear, second-order differential equation resulting from a damped spring-mass system:
d2x/dt2 = -k/m*x-d/m*(dx/dt)
where k is the spring constant, d the damping coefficient, m the mass, and x the displacement. We will simulate this by converting the second-order system into a coupled first-order system. If we let v1=x and v2=dx/dt then the second order equation is equivalent to
dv1/dt = v2
dv2/dt = -k/m*v1-d/m*v2
These equations can be solved by wiring together two integrators, two multipliers and an adder as shown below. In the past this would have been done by using operational amplifiers to compute each mathematical operation. Each integrator must be supplied with an initial condition.

Converting this diagram to Verilog, the top-level module verilog code defines the 18-bit, signed, state variables and a clock divider variable (count). The clocked section resets and updates the state variables. The combinatorial statements compute the Euler approximation to the F(t,V(n)). The separate multiply module ensures that the multiplies will be instantiated as hardware multipliers. The Audio_DAC_ADC module was modifed to allow either ADC-to-DAC passthru or to connect the computation output to the DAC, depending on the position of SW17. SW17 up connects the computation.
/state variables
reg signed [17:0] v1, v2 ;
wire signed [17:0] v1new, v2new ;
//signed mult output
wire signed [17:0] v1xK_M, v2xD_M ;
// the clock divider
reg [4:0] count; //Update state variables of simulation of spring- mass
always @ (posedge CLOCK_50)
begin
count <= count + 1;
if (KEY[3]==0) //reset
begin
v1 <= 32'h10000 ; //
v2 <= 32'h00000 ;
//count <= 0;
end
else if (count==0)
begin
v1 <= v1new ;
v2 <= v2new ;
end
end // Compute new F(t,v) with dt = 2>>9
// v1(n+1) = v1(n) + dt*v2(n)
assign v1new = v1 + (v2>>>9);
// v2(n+1) = v2(n) + dt*(-k/m*v1(n) - d/m*v2(n))
signed_mult K_M(v1xK_M, v1, 18'h10000);
signed_mult D_M(v2xD_M, v2, 18'h00800);
assign v2new = v2 - ((v1xK_M + v2xD_M)>>>9); module signed_mult (out, a, b);
output [17:0] out;
input signed [17:0] a;
input signed [17:0] b;
wire signed [17:0] out;
wire signed [35:0] mult_out;
assign mult_out = a * b;
assign out = {mult_out[35], mult_out[32:16]};
endmodule
Time scaling the solution requires consideration of the value of dt and the update rate (CLOCK_50/(clock divider)) of the state variables. As shown in the code, the clock divider variable (count) is 5-bits wide, so it will overflow and cause an update every 32 CLOCK_50 cycles. If the time step, dt=2-9, then 29 steps must equal one time unit. 29 steps at an update rate of 5*107/32 yields a time unit of 0.328 mSec. A k/m=1 implies a period of 6.28 time units per cycle, so one cycle in this case would be 2.06 mSec. corresponding to 486 Hz.
If the calculation is scaled in time to be in the audio range, then the audio DAC may be used to watch waveforms on an oscilloscope. For the damped spring-mass oscillator with a k/m=1, d/m=1/16, dt=2-8, and a clock rate of 5*108/64 I got the figure below. The top trace is v1 and the bottom is v2. The frequency computed from the time scaling considerations is 486 Hz, while the measured was 475 Hz. Reducing dt to dt=2-9 (see paragraph above) and the clock divider to 32 made the measured frequency 486, matching the computed value. The better match with smaller dt illustrates that the integration is approximate.
The whole project is zipped here. The design consumed 2% of the logic resources of the FPGA, 1% of the memory, and 4 out of 70 9-bit multipliers. You could threfore expect to put up to 50 integrators and 35 multipilers in a bigger design.
dda的fpga实现(转载)的更多相关文章
- 优化基于FPGA的深度卷积神经网络的加速器设计
英文论文链接:http://cadlab.cs.ucla.edu/~cong/slides/fpga2015_chen.pdf 翻译:卜居 转载请注明出处:http://blog.csdn.net/k ...
- 【转载】FPGA算法映射要点
近期一直在学习利用FPGA完成算法的定点运算,转载些相关的博客方面回顾查找.本博文原文链接为:https://blog.csdn.net/u013989284/article/details/7899 ...
- FPGA功耗那些事儿(转载)
在项目设计初期,基于硬件电源模块的设计考虑,对FPGA设计中的功耗估计是必不可少的.笔者经历过一个项目,整个系统的功耗达到了100w,而单片FPGA的功耗估计得到为20w左右,有点过高了,功耗过高则会 ...
- FPGA静态时序分析——IO口时序(Input Delay /output Delay)(转载)
转载地址:http://www.cnblogs.com/linjie-swust/archive/2012/03/01/FPGA.html 1.1 概述 在高速系统中FPGA时序约束不止包括内部时钟 ...
- [转载]克服FPGA I/O引脚分配挑战--xilinx系列
转载走,放到自己的分类中好了 原文地址:I/O引脚分配挑战--xilinx系列">克服FPGA I/O引脚分配挑战--xilinx系列作者:方槍槍 http://www.eefocus ...
- 【转载】FPGA功耗的那些事儿
在项目设计初期,基于硬件电源模块的设计考虑,对FPGA设计中的功耗估计是必不可少的. 笔者经历过一个项目,整个系统的功耗达到了100w,而单片FPGA的功耗估计得到为20w左右, 有点过高了,功耗过高 ...
- 【转载】FPGA静态时序分析——IO口时序
转自:http://www.cnblogs.com/linjie-swust/archive/2012/03/01/FPGA.html 1.1 概述 在高速系统中FPGA时序约束不止包括内部时钟约束 ...
- 【转载】如何在FPGA设计环境中添加加时序约束
转自:http://bbs.ednchina.com/BLOG_ARTICLE_198929.HTM 如何在FPGA设计环境中加时序约束 在给FPGA做逻辑综合和布局布线时,需要在工具中设定时序 ...
- FPGA设计思想与技巧(转载)
题记:这个笔记不是特权同学自己整理的,特权同学只是对这个笔记做了一下完善,也忘了是从那DOWNLOAD来的,首先对整理者表示感谢.这些知识点确实都很实用,这些设计思想或者也可以说是经验吧,是很值得每一 ...
随机推荐
- 关于 Token,你应该知道的十件事
转自:http://ju.outofmemory.cn/entry/134189 原文是一篇很好的讲述 Token 在 Web 应用中使用的文章,而这是我和 Special 合作翻译的译文. 1. T ...
- ADC第一次读取
在ADCCON中,最后0位和1位互斥.如果1位选1的话,0位的值无效.如果1位选0的话,0位的值才有效.当1位选1的话:这是应用层的程序 #if ADSTART==0void niuniu(void) ...
- SSH集成log4j日志环境
第一步:在web.xml初始化log4j <context-param> <param-name>contextConfigLocation</param-name> ...
- 应用Fiddler对手机应用来抓包
Fiddler是一款非常流行并且实用的http抓包工具,它的原理是在本机开启了一个http的代理服务器,然后它会转发所有的http请求和响应,因此,它比一般的firebug或者是chrome自带的抓包 ...
- vue项目使用hbuilder打包后,真机测试白屏
在命令行直接运行 npm run build后,生成的dist文件中,直接打开index.html文件 Tip: built files are meant to be served over an ...
- linux下面安装maven
maven作为最近比较火的项目管理工具,对项目的jar包及其开元添加相应的插件的管理,很方便. 安装maven: 在官网上面去下载最新的maven的压缩包,apache-maven-3.3.1-bin ...
- 022——VUE中remove()方法的使用:
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- SQL server 数据库用户表名称
转自(http://blog.163.com/jlj_sk/blog/static/22579293200861422833924/) 取得SQL server 数据库中 所有用户表名称 select ...
- 剑指offer--47.数据流中的中位数
时间限制:1秒 空间限制:32768K 热度指数:122511 算法知识视频讲解 题目描述 如何得到一个数据流中的中位数?如果从数据流中读出奇数个数值,那么中位数就是所有数值排序之后位于中间的数值.如 ...
- LaTex中插入大括号的多行公式
由于近期要发表论文,不得不恶补LaTex.现在需要插入带大括号的多行公式,效果如下: LaTex编辑如下: \begin{equation} \label{eq6} [x_{i}]=\left\{ \ ...