「SHOI2015」超能粒子炮・改

给你\(T\)组询问,每组询问给定参数\(n,k\),计算\(\sum\limits_{i=0}^k\dbinom{n}{i}\).

\(T\leq10^5,n,k\leq10^{18}\).

这题其实是\(\operatorname{Lucas}\)定理的一个简单扩展。

首先利用\(\operatorname{Lucas}\)定理化简所求和式,由\(\dbinom{n}{m}=\dbinom{n/p}{m/p}\times\dbinom{n\%p}{m\%p}\pmod p\)得:

\[\begin{align*}
\sum_{i=0}^{k}\binom{n}{i}&=
\sum_{i=0}^k\binom{n/p}{i/p}\binom{n\%p}{i\%p}\\
&=\sum_{i=0}^{p-1}\binom{n\%p}{i}\sum_{j=0}^{k/p-1}\binom{n/p}{j}+\binom{n/p}{k/p}\sum_{i=0}^{k\%p}\binom{n\%p}{i}
\end{align*}
\]

在该和式中,\(\sum\limits_{i=0}^{p-1}\dbinom{n\%p}{i}\)和 \(\sum\limits_{i=0}^{k\%p}\dbinom{n\%p}{i}\)都可以用\(\Omicron(p^2)\)的时间复杂度预处理,而\(\dbinom{n/p}{k/p}\)可以利用\(\operatorname{Lucas}\)定理在\(\Omicron(\log_pn)\)的时间复杂度内计算。

所以我们只要能够计算出\(\sum\limits_{i=0}^{k/p-1}\dbinom{n/p}{i}\)就可以快速计算出\(\sum\limits_{i=0}^{k}\dbinom{n}{i}\),而这两个式子形式相同,并且每次\(n,k\)规模减半,所以可以递归解决,并且次数不超过\(\log n\)次。

所以总时间复杂度为\(\Omicron(T\log^2n)\).

code

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int mod=2333;
int T,c[mod+5][mod+5],pre[mod+5][mod+5];
inline ll read(){
ll res=0,f_f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-') f_f=-1;ch=getchar();}
while(ch>='0'&&ch<='9') res=(res<<3)+(res<<1)+(ch-'0'),ch=getchar();
return res*f_f;
}
inline void Gmo(int &x){
while(x<0) x+=mod;
while(x>=mod) x-=mod;
}
inline void init(){
c[0][0]=1;
for (int i=1;i<mod;i++){
c[i][0]=1;
for (int j=1;j<=i;j++){
c[i][j]=c[i-1][j-1]+c[i-1][j];
Gmo(c[i][j]);
}
}
for (int i=0;i<mod;i++){
pre[i][0]=c[i][0];
for (int j=1;j<mod;j++){
pre[i][j]=pre[i][j-1]+c[i][j];
Gmo(pre[i][j]);
}
}
}
inline int Lucas(ll n,ll m,int p){
if(m==0) return 1;
return 1ll*c[n%p][m%p]*Lucas(n/p,m/p,p)%p;
}
inline int calc(ll n,ll k,int p){
int x=1ll*Lucas(n/p,k/p,p)*pre[n%p][k%p]%mod;
if(k<p) return x;
int y=1ll*calc(n/p,k/p-1,p)*pre[n%p][p-1]%mod;
return (x+y)%mod;
}
int main(){
T=read(),init();
while(T--){
ll x=read(),y=read();
printf("%d\n",calc(x,y,mod));
}
return 0;
}

「SHOI2015」超能粒子炮・改的更多相关文章

  1. loj#2038. 「SHOI2015」超能粒子炮・改

    题目链接 loj#2038. 「SHOI2015」超能粒子炮・改 题解 卢卡斯定理 之后对于%p分类 剩下的是个子问题递归 n,k小于p的S可以预处理,C可以卢卡斯算 代码 #include<c ...

  2. 【LOJ】#2038. 「SHOI2015」超能粒子炮・改

    题解 用lucas随便分析一波就出来了 \(\binom{n}{k} = \binom{n % p}{k % p}\binom{n / p}{k / p}\) 那么对于一个余数r,如果r <= ...

  3. BZOJ 4591 【SHOI2015】 超能粒子炮·改

    题目链接:超能粒子炮·改 这道题的大体思路就是用\(lucas\)定理,然后合并同类项,就可以得到一个可以递归算的式子了. 我们用\(S(n,k)\)表示答案,\(p\)表示模数(\(2333\)是一 ...

  4. bzoj4591 【Shoi2015】超能粒子炮·改

    由Lucas定理C(n,k)=C(n/2333,k/2333)*C(n%2333,k%2333)%2333 则ans=ΣC(n,i),(i<=k)  =C(n/2333,0)*C(n%2333, ...

  5. Bzoj 4591: [Shoi2015]超能粒子炮·改 数论,Lucas定理,排列组合

    4591: [Shoi2015]超能粒子炮·改 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 178  Solved: 70[Submit][Stat ...

  6. bzoj 4591: [Shoi2015]超能粒子炮·改 [lucas定理]

    4591: [Shoi2015]超能粒子炮·改 题意:多组询问,求 \[ S(n, k) = \sum_{i=0}^n \binom{n}{i} \mod 2333,\ k \le n \le 10^ ...

  7. 【BZOJ4591】[SHOI2015]超能粒子炮·改 (卢卡斯定理)

    [BZOJ4591][SHOI2015]超能粒子炮·改 (卢卡斯定理) 题面 BZOJ 洛谷 题解 感天动地!终于不是拓展卢卡斯了!我看到了一个模数,它是质数!!! 看着这个东西就感觉可以递归处理. ...

  8. 洛谷 P4345 [SHOI2015]超能粒子炮·改 解题报告

    P4345 [SHOI2015]超能粒子炮·改 题意 求\(\sum_{i=0}^k\binom{n}{i}\),\(T\)组数据 范围 \(T\le 10^5,n,j\le 10^{18}\) 设\ ...

  9. bzoj4591 / P4345 [SHOI2015]超能粒子炮·改

    P4345 [SHOI2015]超能粒子炮·改 题意:求$\sum_{i=1}^{k}C(n,i)\%(P=2333)$ 肯定要先拆开,不然怎么做呢(大雾) 把$C(n,i)$用$lucas$分解一下 ...

随机推荐

  1. centos7修改ssh端口及添加ssh监听端口

    ssh 修改默认端口 [root@node-1 ~]# vi /etc/ssh/sshd_config 修改port 为 5522 重启[root@node-1 ~]# systemctl resta ...

  2. 基于Intel x86 Android的RAD游戏开发

    zip文件还包含编译的"MonkeyGame-debug".可以在模拟器中运行的二进制文件.在"game.build"文件夹中有一个HTML5 build.在C ...

  3. 创建自定义视图在Android矩阵效果画布教程

    介绍 下面是一个快速教程,教你如何在Android中创建自定义视图.自定义视图创建一个矩阵雨效果. 本教程发布在http://www.androidlearner.com/. 背景 下面是关于如何工作 ...

  4. 搭建zabbix+grafana监控

    编写一件安装脚本 #!/bin/sh echo "\033[32;1m脚本作者:fage\033[0m" #sleep 10 zabbix_version=4.0.2 zabbix ...

  5. Oracle 数据库导入数据和编码问题

    配置 control 文件: load data characterset utf8 append into table role_res_gold fields terminated by ';' ...

  6. 浅谈Samsung Exynos4412处理器

    转载于:http://www.cnblogs.com/android210/archive/2013/01/16/2862349.html Topic:浅谈Samsung Exynos4412处理器( ...

  7. 3.字符设备led驱动

    1.硬件原理图 由图可知,led1,led2,led3,led4,分别对应GPB5,GPB6,GPB7,GPB8,由s3c2440芯片手册可得到如下图所示,分别配置GPBCON和GPBDAT即可 2. ...

  8. 用redis当作LRU缓存

    原文地址:https://redis.io/topics/lru-cache Redis可以用来作缓存,他可以很方便的淘汰(删除)旧数据添加新数据,类似memcached.LRU只是其中的一种置换算法 ...

  9. 佛山6397.7539(薇)xiaojie:佛山哪里有xiaomei

    佛山哪里有小姐服务大保健[微信:6397.7539倩儿小妹[佛山叫小姐服务√o服务微信:6397.7539倩儿小妹[佛山叫小姐服务][十微信:6397.7539倩儿小妹][佛山叫小姐包夜服务][十微信 ...

  10. day29 Pyhton 面向对象 继承进阶

    一.内容回顾 初识继承 父类\基类\超类 子类\派生类 派生 :派生方法.派生属性 单继承 继承的语法class子类名(父类名) 解决开发中代码冗余的问题 子类继承了父类之后,可以调用父类中的方法 如 ...