面试官:说说CountDownLatch,CyclicBarrier,Semaphore的原理?
CountDownLatch
CountDownLatch适用于在多线程的场景需要等待所有子线程全部执行完毕之后再做操作的场景。
举个例子,早上部门开会,有人在上厕所,这时候需要等待所有人从厕所回来之后才能开始会议。
public class CountDownLatchTest {
private static int num = 3;
private static CountDownLatch countDownLatch = new CountDownLatch(num);
private static ExecutorService executorService = Executors.newFixedThreadPool(num);
public static void main(String[] args) throws Exception{
executorService.submit(() -> {
System.out.println("A在上厕所");
try {
Thread.sleep(4000);
} catch (InterruptedException e) {
e.printStackTrace();
}finally {
countDownLatch.countDown();
System.out.println("A上完了");
}
});
executorService.submit(()->{
System.out.println("B在上厕所");
try {
Thread.sleep(2000);
} catch (InterruptedException e) {
e.printStackTrace();
}finally {
countDownLatch.countDown();
System.out.println("B上完了");
}
});
executorService.submit(()->{
System.out.println("C在上厕所");
try {
Thread.sleep(3000);
} catch (InterruptedException e) {
e.printStackTrace();
}finally {
countDownLatch.countDown();
System.out.println("C上完了");
}
}); System.out.println("等待所有人从厕所回来开会...");
countDownLatch.await();
System.out.println("所有人都好了,开始开会...");
executorService.shutdown(); }
}
代码执行结果:
A在上厕所
B在上厕所
等待所有人从厕所回来开会...
C在上厕所
B上完了
C上完了
A上完了
所有人都好了,开始开会...
初始化一个CountDownLatch实例传参3,因为我们有3个子线程,每次子线程执行完毕之后调用countDown()方法给计数器-1,主线程调用await()方法后会被阻塞,直到最后计数器变为0,await()方法返回,执行完毕。他和join()方法的区别就是join会阻塞子线程直到运行结束,而CountDownLatch可以在任何时候让await()返回,而且用ExecutorService没法用join了,相比起来,CountDownLatch更灵活。
CountDownLatch基于AQS实现,volatile变量state维持倒数状态,多线程共享变量可见。
- CountDownLatch通过构造函数初始化传入参数实际为AQS的state变量赋值,维持计数器倒数状态
- 当主线程调用await()方法时,当前线程会被阻塞,当state不为0时进入AQS阻塞队列等待。
- 其他线程调用countDown()时,state值原子性递减,当state值为0的时候,唤醒所有调用await()方法阻塞的线程
CyclicBarrier
CyclicBarrier叫做回环屏障,它的作用是让一组线程全部达到一个状态之后再全部同时执行,而且他有一个特点就是所有线程执行完毕之后是可以重用的。
public class CyclicBarrierTest {
private static int num = 3;
private static CyclicBarrier cyclicBarrier = new CyclicBarrier(num, () -> {
System.out.println("所有人都好了,开始开会...");
System.out.println("-------------------");
});
private static ExecutorService executorService = Executors.newFixedThreadPool(num);
public static void main(String[] args) throws Exception{
executorService.submit(() -> {
System.out.println("A在上厕所");
try {
Thread.sleep(4000);
System.out.println("A上完了");
cyclicBarrier.await();
System.out.println("会议结束,A退出");
} catch (Exception e) {
e.printStackTrace();
}finally { }
});
executorService.submit(()->{
System.out.println("B在上厕所");
try {
Thread.sleep(2000);
System.out.println("B上完了");
cyclicBarrier.await();
System.out.println("会议结束,B退出");
} catch (Exception e) {
e.printStackTrace();
}finally { }
});
executorService.submit(()->{
System.out.println("C在上厕所");
try {
Thread.sleep(3000);
System.out.println("C上完了");
cyclicBarrier.await();
System.out.println("会议结束,C退出");
} catch (Exception e) {
e.printStackTrace();
}finally { }
}); executorService.shutdown(); }
}
输出结果为:
A在上厕所
B在上厕所
C在上厕所
B上完了
C上完了
A上完了
所有人都好了,开始开会...
-------------------
会议结束,A退出
会议结束,B退出
会议结束,C退出
从结果来看和CountDownLatch非常相似,初始化传入3个线程和一个任务,线程调用await()之后进入阻塞,计数器-1,当计数器为0时,就去执行CyclicBarrier中构造函数的任务,当任务执行完毕后,唤醒所有阻塞中的线程。这验证了CyclicBarrier让一组线程全部达到一个状态之后再全部同时执行的效果。
再举个例子来验证CyclicBarrier可重用的效果。
public class CyclicBarrierTest2 {
private static int num = 3;
private static CyclicBarrier cyclicBarrier = new CyclicBarrier(num, () -> {
System.out.println("-------------------");
});
private static ExecutorService executorService = Executors.newFixedThreadPool(num); public static void main(String[] args) throws Exception {
executorService.submit(() -> {
System.out.println("A在上厕所");
try {
Thread.sleep(4000);
System.out.println("A上完了");
cyclicBarrier.await();
System.out.println("会议结束,A退出,开始撸代码");
cyclicBarrier.await();
System.out.println("C工作结束,下班回家");
cyclicBarrier.await();
} catch (Exception e) {
e.printStackTrace();
} finally { }
});
executorService.submit(() -> {
System.out.println("B在上厕所");
try {
Thread.sleep(2000);
System.out.println("B上完了");
cyclicBarrier.await();
System.out.println("会议结束,B退出,开始摸鱼");
cyclicBarrier.await();
System.out.println("B摸鱼结束,下班回家");
cyclicBarrier.await();
} catch (Exception e) {
e.printStackTrace();
} finally { }
});
executorService.submit(() -> {
System.out.println("C在上厕所");
try {
Thread.sleep(3000);
System.out.println("C上完了");
cyclicBarrier.await();
System.out.println("会议结束,C退出,开始摸鱼");
cyclicBarrier.await();
System.out.println("C摸鱼结束,下班回家");
cyclicBarrier.await();
} catch (Exception e) {
e.printStackTrace();
} finally { }
}); executorService.shutdown(); }
}
输出结果:
A在上厕所
B在上厕所
C在上厕所
B上完了
C上完了
A上完了
-------------------
会议结束,A退出,开始撸代码
会议结束,B退出,开始摸鱼
会议结束,C退出,开始摸鱼
-------------------
C摸鱼结束,下班回家
C工作结束,下班回家
B摸鱼结束,下班回家
-------------------
从结果来看,每个子线程调用await()计数器减为0之后才开始继续一起往下执行,会议结束之后一起进入摸鱼状态,最后一天结束一起下班,这就是可重用。
CyclicBarrier还是基于AQS实现的,内部维护parties记录总线程数,count用于计数,最开始count=parties,调用await()之后count原子递减,当count为0之后,再次将parties赋值给count,这就是复用的原理。
- 当子线程调用await()方法时,获取独占锁,同时对count递减,进入阻塞队列,然后释放锁
- 当第一个线程被阻塞同时释放锁之后,其他子线程竞争获取锁,操作同1
- 直到最后count为0,执行CyclicBarrier构造函数中的任务,执行完毕之后子线程继续向下执行
Semaphore
Semaphore叫做信号量,和前面两个不同的是,他的计数器是递增的。
public class SemaphoreTest {
private static int num = 3;
private static int initNum = 0;
private static Semaphore semaphore = new Semaphore(initNum);
private static ExecutorService executorService = Executors.newFixedThreadPool(num);
public static void main(String[] args) throws Exception{
executorService.submit(() -> {
System.out.println("A在上厕所");
try {
Thread.sleep(4000);
semaphore.release();
System.out.println("A上完了");
} catch (Exception e) {
e.printStackTrace();
}finally { }
});
executorService.submit(()->{
System.out.println("B在上厕所");
try {
Thread.sleep(2000);
semaphore.release();
System.out.println("B上完了");
} catch (Exception e) {
e.printStackTrace();
}finally { }
});
executorService.submit(()->{
System.out.println("C在上厕所");
try {
Thread.sleep(3000);
semaphore.release();
System.out.println("C上完了");
} catch (Exception e) {
e.printStackTrace();
}finally { }
}); System.out.println("等待所有人从厕所回来开会...");
semaphore.acquire(num);
System.out.println("所有人都好了,开始开会..."); executorService.shutdown(); }
}
输出结果为:
A在上厕所
B在上厕所
等待所有人从厕所回来开会...
C在上厕所
B上完了
C上完了
A上完了
所有人都好了,开始开会...
稍微和前两个有点区别,构造函数传入的初始值为0,当子线程调用release()方法时,计数器递增,主线程acquire()传参为3则说明主线程一直阻塞,直到计数器为3才会返回。
Semaphore还还还是基于AQS实现的,同时获取信号量有公平和非公平两种策略
- 主线程调用acquire()方法时,用当前信号量值-需要获取的值,如果小于0,则进入同步阻塞队列,大于0则通过CAS设置当前信号量为剩余值,同时返回剩余值
- 子线程调用release()给当前信号量值计数器+1(增加的值数量由传参决定),同时不停的尝试因为调用acquire()进入阻塞的线程
总结
CountDownLatch通过计数器提供了比join更灵活的多线程控制方式,CyclicBarrier也可以达到CountDownLatch的效果,而且有可复用的特点,Semaphore则是采用信号量递增的方式,开始的时候并不需要关注需要同步的线程个数,并且提供获取信号的公平和非公平策略。
- END -
面试官:说说CountDownLatch,CyclicBarrier,Semaphore的原理?的更多相关文章
- 【对线面试官】CountDownLatch和CyclicBarrier的区别
<对线面试官>系列目前已经连载31篇啦,这是一个讲人话面试系列 [对线面试官]Java注解 [对线面试官]Java泛型 [对线面试官] Java NIO [对线面试官]Java反射 &am ...
- 并发包下常见的同步工具类详解(CountDownLatch,CyclicBarrier,Semaphore)
目录 1. 前言 2. 闭锁CountDownLatch 2.1 CountDownLatch功能简介 2.2 使用CountDownLatch 2.3 CountDownLatch原理浅析 3.循环 ...
- CountDownLatch/CyclicBarrier/Semaphore 使用过吗?
CountDownLatch/CyclicBarrier/Semaphore 使用过吗?下面详细介绍用法: 一,(等待多线程完成的)CountDownLatch 背景; countDownLatch ...
- Java并发编程工具类 CountDownLatch CyclicBarrier Semaphore使用Demo
Java并发编程工具类 CountDownLatch CyclicBarrier Semaphore使用Demo CountDownLatch countDownLatch这个类使一个线程等待其他线程 ...
- 并发包下常见的同步工具类(CountDownLatch,CyclicBarrier,Semaphore)
在实际开发中,碰上CPU密集且执行时间非常耗时的任务,通常我们会选择将该任务进行分割,以多线程方式同时执行若干个子任务,等这些子任务都执行完后再将所得的结果进行合并.这正是著名的map-reduce思 ...
- 面试官再问你 HashMap 底层原理,就把这篇文章甩给他看
前言 HashMap 源码和底层原理在现在面试中是必问的.因此,我们非常有必要搞清楚它的底层实现和思想,才能在面试中对答如流,跟面试官大战三百回合.文章较长,介绍了很多原理性的问题,希望对你有所帮助~ ...
- Java中的4个并发工具类 CountDownLatch CyclicBarrier Semaphore Exchanger
在 java.util.concurrent 包中提供了 4 个有用的并发工具类 CountDownLatch 允许一个或多个线程等待其他线程完成操作,课题点 Thread 类的 join() 方法 ...
- 高并发第十单:J.U.C AQS(AbstractQueuedSynchronizer) 组件:CountDownLatch. CyclicBarrier .Semaphore
这里有一篇介绍AQS的文章 非常好: Java并发之AQS详解 AQS全名:AbstractQueuedSynchronizer,是并发容器J.U.C(java.lang.concurrent)下lo ...
- CountDownLatch CyclicBarrier Semaphore 比较
document CountDownLatch A synchronization aid that allows one or more threads to wait until a set of ...
- 多线程中 CountDownLatch CyclicBarrier Semaphore的使用
CountDownLatch 调用await()方法的线程会被挂起,它会等待直到count值为0才继续执行.也可以传入时间,表示时间到之后,count还没有为0的时候,就会继续执行. package ...
随机推荐
- 突然挂了!Redis缓存都在内存中,这下完了!
我是Redis,一个叫Antirez的男人把我带到了这个世界上. “快醒醒!快醒醒!”,隐隐约约,我听到有人在叫我. 慢慢睁开眼睛,原来旁边是MySQL大哥. “我怎么睡着了?” “嗨,你刚才是不是出 ...
- 2020 计蒜之道 预赛 第三场 石子游戏(简单)(暴力DP)
石子游戏(简单) 原题链接 思路: 通过形式容易看出是一道DP.其中异或和的情况只有64种,所以我们可以开一维来记录当前异或和的状态. 利用dp[当前位置][异或和][是否选择当前]来进行状态转移.时 ...
- 快速了解前端开发HTML的正确姿势
摘要:web前端开发(也称为客户端开发)主要是通过html,CSS和JavaScript等前端技术,实现网站在客服端的正确显示及交互功能. 一.web标准介绍 web标准: w3c:万维网联盟组织,用 ...
- Jenkins打Docker镜像推送到私有仓库
Jenkins打Docker镜像推送到私有仓库 因为我的Jenkins是安装在群晖NAS中的docker,所以我这边就以Docker安装Jenkins为例 echo '================ ...
- 深夜,我偷听到程序员要对session下手……
我是一个web服务器 我是一个web服务器,我的工作是给人类提供上网服务,我每天要为数以万计的人提供网页浏览服务. 已经是深夜了,我还在和手下几个兄弟为了一件事紧张讨论着. "老大,现在咱们 ...
- 报表和仪表板在线设计器Stimulsoft Designer 最新版发布
Stimulsoft Designer是统一的Stimulsoft框架的一部分,该框架包括用于生成报表和分析数据的引擎.报表设计器和查看器. 您可以在计算机上创建报表,继续使用在线设计器在云中对其进行 ...
- 灵感来袭,基于Redis的分布式延迟队列(续)
背景 上一篇(灵感来袭,基于Redis的分布式延迟队列)讲述了基于Java DelayQueue和Redis实现了分布式延迟队列,这种方案实现比较简单,应用于延迟小,消息量不大的场景是没问题的,毕竟J ...
- 038 01 Android 零基础入门 01 Java基础语法 04 Java流程控制之选择结构 05 案例演示switch结构-星期的表示案例以及总结
038 01 Android 零基础入门 01 Java基础语法 04 Java流程控制之选择结构 05 案例演示switch结构-星期的表示案例以及总结 本文知识点:案例演示switch结构并对sw ...
- kail使用sunJDK
今天在安装软件的时候报错,提示应使用oracle的JDK,所以鼓捣了一会发现个简单的方法 1.下载安装包解压文件到opttar -xzvf jdk-8u91-linux-x64.tar.gz 2.设置 ...
- 【题解】CF1368C Even Picture
\(\color{purple}{Link}\) \(\text{Solution:}\) 这是一道构造题. 题目要求恰好有\(n\)个点的四周全都是灰色点,所以直接输正方形是不行了. 考虑\(k=1 ...