注:参考文末文章,加上自己的理解。

1、增量更新

有一个 base_table 表存放的是 12 月 15 日之前的所有数据,当 12 月 16 日的数据产生后,生成了一个 incremental_table 表。

现在需要,将 incremental_table 这个增量表的数据更新到 base_table 表中。

那么,就有两种情况:

(1)保留历史数据

通过拉链表实现:

创建一个拉链表;

使用初始全量载入到拉链表中;

将每日增量数据 INSERT OVERWRITE 到拉链表中。

这样的话,就会存在重复的数据,保留了历史数据。

(2)不保留了历史数据

方法1:先将 base_table 表和 incremental_table 表 left join,将修改的数据覆盖写到 base_table 表,通过 union 将新增数据插入到 base_table 表。

方法2:union all base_table 表和 incremental_table 表,再取更新时间最新记录。

这样,就不会存在重复的数据,但是没有了历史数据。

2、对第一种情况

通过拉链表实现

2.1、准备工作

(1)建表

create table incremental_table (
id string,
name string,
addr string
) comment '增量表'
partitioned by (dt string)
row format delimited fields terminated by ','
stored as textfile; create table base_table (
id string,
name string,
addr string
) comment '主表'
partitioned by (dt string)
row format delimited fields terminated by ','
stored as textfile;

(2)数据

源数据incre0.txt

1,lijie,chongqing
2,zhangshan,sz
3,lisi,shanghai
4,wangwu,usa

增量数据incre1.txt

1,lijie,chengdu      # 地址变了
2,zhangshan,huoxing # 地址变了
4,wangwu,lalalala # 地址变了
5,xinzeng,hehe # 新增数据

(3)将 incre0.txt 导入主表中,将 incre0.txt 和 incre1.txt 导入增量表中

load data local inpath '/root/data/incre0.txt' overwrite into table base_table partition (dt='20191020');

hive> select * from base_table;
OK
1 lijie chongqing 20191020
2 zhangshan sz 20191020
3 lisi shanghai 20191020
4 wangwu usa 20191020 load data local inpath '/root/data/incre0.txt' overwrite into table incremental_table partition (dt='20191020'); load data local inpath '/root/data/incre1.txt' overwrite into table incremental_table partition (dt='20191021'); hive> select * from incremental_table;
OK
1 lijie chongqing 20191020
2 zhangshan sz 20191020
3 lisi shanghai 20191020
4 wangwu usa 20191020
1 lijie chengdu 20191021
2 zhangshan huoxing 20191021
4 wangwu lalalala 20191021
5 xinzeng hehe 20191021

2.2、导入

-- 新建拉链表
create table zipper_table (
id string,
name string,
addr string,
start_date string,
end_date string
) comment '拉链表'
row format delimited fields terminated by ','
stored as textfile; -- 将主表中的数据导入拉链表进行初始化(初始全量载入到拉链表中)
insert into table zipper_table
select id,
name,
addr,
dt as start_date,
'99991231' as end_date
from base_table
where dt='20191020'; hive> select * from zipper_table;
OK
1 lijie chongqing 20191020 99991231
2 zhangshan sz 20191020 99991231
3 lisi shanghai 20191020 99991231
4 wangwu usa 20191020 99991231 -- 将每日增量数据 INSERT OVERWRITE 到拉链表中
-- 也可以使用 hive 的 merge into 语法
insert overwrite table zipper_table
select * from
(
select a.id,
a.name,
a.addr,
a.start_date,
case
when a.end_date='99991231' and b.id is not null then '20191020'
else a.end_date
end as end_date
from zipper_table as a
left join (select * from incremental_table where dt='20191021') as b
on a.id=b.id
union
select c.id,
c.name,
c.addr,
'20191021' as start_date,
'99991231' as end_date
from incremental_table c
where c.dt='20191021'
) as t; hive> select * from zipper_table;
OK
1 lijie chengdu 20191021 99991231
1 lijie chongqing 20191020 20191020
2 zhangshan huoxing 20191021 99991231
2 zhangshan sz 20191020 20191020
3 lisi shanghai 20191020 99991231
4 wangwu lalalala 20191021 99991231
4 wangwu usa 20191020 20191020
5 xinzeng hehe 20191021 99991231 hive> select * from incremental_table;
OK
1 lijie chongqing 20191020
2 zhangshan sz 20191020
3 lisi shanghai 20191020
4 wangwu usa 20191020
1 lijie chengdu 20191021
2 zhangshan huoxing 20191021
4 wangwu lalalala 20191021
5 xinzeng hehe 20191021

3、对第二种情况

3.1、方法1

先将 base_table 表和 incremental_table 表 left join,将未修改的数据覆盖写到 base_table 表,再将修改的数据插入到 base_table 表。

hive> select * from base_table;
OK
1 lijie chongqing 20191020
2 zhangshan sz 20191020
3 lisi shanghai 20191020
4 wangwu usa 20191020 hive> select * from incremental_table;
OK
1 lijie chongqing 20191020
2 zhangshan sz 20191020
3 lisi shanghai 20191020
4 wangwu usa 20191020
1 lijie chengdu 20191021
2 zhangshan huoxing 20191021
4 wangwu lalalala 20191021
5 xinzeng hehe 20191021 insert overwrite table base_table
select a.id,
a.name,
a.addr,
a.dt
from base_table a
left join (select * from incremental_table where dt='20191021') b
on a.id=b.id
where b.id is null
union all
select c.id,
c.name,
c.addr,
c.dt
from (select * from incremental_table where dt='20191021') c; hive> select * from base_table;
OK
3 lisi shanghai 20191020
1 lijie chengdu 20191021
2 zhangshan huoxing 20191021
4 wangwu lalalala 20191021
5 xinzeng hehe 20191021

3.2、方法2

union all base_table 表和 incremental_table 表,再取更新时间最新的记录。

【可以通过窗口函数编一个序号,也可以使用 hive 的预定义属性最近更新时间字段】

hive> select * from base_table;
OK
1 lijie chongqing 20191020
2 zhangshan sz 20191020
3 lisi shanghai 20191020
4 wangwu usa 20191020 hive> select * from incremental_table;
OK
1 lijie chongqing 20191020
2 zhangshan sz 20191020
3 lisi shanghai 20191020
4 wangwu usa 20191020
1 lijie chengdu 20191021
2 zhangshan huoxing 20191021
4 wangwu lalalala 20191021
5 xinzeng hehe 20191021 insert overwrite table base_table
select b.id,b.name,b.addr,b.dt
from
(
select a.*,
row_number() over(distribute by a.id sort by a.dt desc) as rn
from
(
select id,name,addr,dt from base_table
union all
select id,name,addr,dt from incremental_table where dt='20191021'
) a
) b
where b.rn=1; hive> select * from base_table;
OK
3 lisi shanghai 20191020
1 lijie chengdu 20191021
2 zhangshan huoxing 20191021
4 wangwu lalalala 20191021
5 xinzeng hehe 20191021

参考地址:

https://www.cnblogs.com/lxbmaomao/p/9821128.html

https://blog.csdn.net/qq_20641565/article/details/52763663

https://blog.csdn.net/qq_20641565/article/details/53164155?utm_medium=distribute.pc_relevant_t0.none-task-blog-BlogCommendFromMachineLearnPai2-1.control&depth_1-utm_source=distribute.pc_relevant_t0.none-task-blog-BlogCommendFromMachineLearnPai2-1.control

https://blog.csdn.net/ZhouyuanLinli/article/details/86638454?utm_medium=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-2.control&depth_1-utm_source=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-2.control

数仓增量更新hive实现的更多相关文章

  1. 基于Hive进行数仓建设的资源元数据信息统计:Hive篇

    在数据仓库建设中,元数据管理是非常重要的环节之一.根据Kimball的数据仓库理论,可以将元数据分为这三类: 技术元数据,如表的存储结构结构.文件的路径 业务元数据,如血缘关系.业务的归属 过程元数据 ...

  2. 基于Hive进行数仓建设的资源元数据信息统计:Spark篇

    在数据仓库建设中,元数据管理是非常重要的环节之一.根据Kimball的数据仓库理论,可以将元数据分为这三类: 技术元数据,如表的存储结构结构.文件的路径 业务元数据,如血缘关系.业务的归属 过程元数据 ...

  3. 在HUE中将文本格式的数据导入hive数仓中

    今天有一个需求需要将一份文档形式的hft与fdd的城市关系关系的数据导入到hive数仓中,之前没有在hue中进行这项操作(上家都是通过xshell登录堡垒机直接连服务器进行操作的),特此记录一下. - ...

  4. Hive 数仓中常见的日期转换操作

    (1)Hive 数仓中一些常用的dt与日期的转换操作 下面总结了自己工作中经常用到的一些日期转换,这类日期转换经常用于报表的时间粒度和统计周期的控制中 日期变换: (1)dt转日期 to_date(f ...

  5. hive不分区增量更新

    insert overwrite table ods.zeg_so select *,case when zsm.id is not null then cast(current_timestamp ...

  6. 使用hive增量更新

    目录 1.增量更新 2.对第一种情况 2.1.准备工作 2.2.更新数据 3.对第二种情况 3.1.准备工作 3.2.方法1 3.3.方法2 参考文末文章,加上自己的理解. 1.增量更新 有一个 ba ...

  7. 使用Oozie中workflow的定时任务重跑hive数仓表的历史分期调度

    在数仓和BI系统的开发和使用过程中会经常出现需要重跑数仓中某些或一段时间内的分区数据,原因可能是:1.数据统计和计算逻辑/口径调整,2.发现之前的埋点数据收集出现错误或者埋点出现错误,3.业务数据库出 ...

  8. ETL数仓测试

    前言 datalake架构 离线数据 ODS -> DW -> DM https://www.jianshu.com/p/72e395d8cb33 https://www.cnblogs. ...

  9. 数仓1.4 |业务数仓搭建| 拉链表| Presto

    电商业务及数据结构 SKU库存量,剩余多少SPU商品聚集的最小单位,,,这类商品的抽象,提取公共的内容 订单表:周期性状态变化(order_info) id 订单编号 total_amount 订单金 ...

随机推荐

  1. 如何让淘宝不卡顿? 读写比例 动态扩容 分布式化路线 mysql 优化

    作为数据库核心成员,如何让淘宝不卡顿? https://mp.weixin.qq.com/s/l-qXV8NI6ywnUvp3S6an3g

  2. 一次SQL盲注记录

    背景:遇到一个sql注入,数字型布尔盲注+waf(直接超时那种),只要能出用户名,数据库名即可. 解决办法: 因为可以只要能出user(),database()即可,所以用不着SELECT,那么问题就 ...

  3. GeoMesa 环境搭建

    GeoMesa 环境搭建 版本 虚拟机安装 os centos7 Centos安装 CentOS安装Jdk并配置环境变量 hadoop.hbase环境部署 geomesa_hbase部署 geoser ...

  4. CentOS 7 使用pyenv安装python3.6

    安装pyenv 1.安装git yum install -y git 2.安装pyenv curl -L https://raw.githubusercontent.com/yyuu/pyenv-in ...

  5. codeblocks输出中文乱码解决办法

    在使用codeblocks进行编程的时候我发现控制台输出会出现中文乱码,就像这样: 所以很快我就问了老师,解决步骤如下: 一:如果源码是用codeblock编写的,打开Setting->Edit ...

  6. springmvc url-pattern配置/*报错

    问题:springmvc 中dispatcherServlet配置url-pattern  "/*"时提示找不到controllercontroller RequestMappin ...

  7. c++中几种swap

    在c与c++中,有多种办法可以通过函数交换传入的两数的值,但有容易有一些问题产生,因而本文将几种交换方式及容易出错的点进行了分类. 1.传引用这是c++中最常见方式如下: int swap1 (int ...

  8. Codeforces Round #656 (Div. 3) B. Restore the Permutation by Merger

    题目链接:https://codeforces.com/contest/1385/problem/B 题意 有两个大小为 $n$ 的相同的排列,每次从二者或二者之一的首部取元素排入新的数组,给出这个大 ...

  9. hdu1890 Robotic Sort (splay+区间翻转单点更新)

    Problem Description Somewhere deep in the Czech Technical University buildings, there are laboratori ...

  10. 高斯消元初步(Gauss算法)

    Gauss算法,称为高斯消元算法,用来解决n元一次方程,在解决线性方程问题起着重要作用. 简述 运用高斯消元的方法,我们可以在O(n3)的时间求出n元线性方程,但是由于时间复杂度的原因,请注意题目数据 ...