题意:

已知 \(X_i = a * X_{i - 1} + b * X_{i - 2}\),现给定\(X_0,X_1,a,b\),询问\(X^n \mod p\),其中\(n <= 10^{1e6}\)

思路:

显然这道题需要用到矩阵快速幂,但是因为\(n\)是百万位级别,直接快速幂复杂度为\(1e6 * log10 * 4 * C1\),超时。

所以我们可以用十进制矩阵快速幂,和二进制类似,复杂度为\(1e6 * 4 * C2\)。因为这里的\(n\)比较大,所以\(C2 < log10 * C1\)大概率发生。

代码:

#include<map>
#include<set>
#include<queue>
#include<cmath>
#include<stack>
#include<ctime>
#include<string>
#include<vector>
#include<cstdio>
#include<cstring>
#include<sstream>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxn = 1e6 + 5;
const int INF = 0x3f3f3f3f;
const ull seed = 11;
const int MOD = 1e9 + 7;
using namespace std;
char s[maxn];
ll x0, x1, a, b, mod;
struct Mat{
ll s[2][2];
void init(){
for(int i = 0; i < 2; i++)
for(int j = 0; j < 2; j++)
s[i][j] = 0;
}
};
inline Mat pmul(Mat a, Mat b){
Mat t;
t.init();
for(int i = 0; i < 2; i++){
for(int j = 0; j < 2; j++){
for(int k = 0; k < 2; k++){
t.s[i][j] = (t.s[i][j] + a.s[i][k] * b.s[k][j]) % mod;
}
}
}
return t;
}
inline Mat ppow(Mat a, int b){
Mat ret;
ret.init();
for(int i = 0; i < 2; i++) ret.s[i][i] = 1;
while(b){
if(b & 1) ret = pmul(ret, a);
a = pmul(a, a);
b >>= 1;
}
return ret;
}
inline Mat power(Mat a, char *s, int n){
Mat ret;
ret.init();
for(int i = 0; i < 2; i++) ret.s[i][i] = 1;
for(int i = n; i >= 1; i--){
int x = s[i] - '0';
if(x) ret = pmul(ret, ppow(a, x));
a = ppow(a, 10);
}
return ret;
}
int main(){
scanf("%lld%lld%lld%lld", &x0, &x1, &a, &b);
scanf("%s%lld", s + 1, &mod);
int n = strlen(s + 1);
Mat ans, t;
ans.init();
ans.s[0][0] = x1, ans.s[0][1] = x0;
t.s[0][0] = a, t.s[0][1] = 1, t.s[1][0] = b, t.s[1][1] = 0;
t = power(t, s, n);
ans = pmul(ans, t);
printf("%lld\n", ans.s[0][1]);
return 0;
}

牛客多校第五场B generator1(十进制矩阵快速幂)题解的更多相关文章

  1. generator 1(2019年牛客多校第五场B题+十进制矩阵快速幂)

    目录 题目链接 思路 代码 题目链接 传送门 思路 十进制矩阵快速幂. 代码 #include <set> #include <map> #include <deque& ...

  2. 2019牛客多校第五场 B - generator 1 矩阵快速幂+十倍增+二进制倍增优化

    B - generator 1 题意 给你\(x_{0}.x_{1}.a.b.b.mod\),根据\(x_{i} = a*x_{i-1} + b*x_{i-2}\)求出\(x_{n}\) 思路 一般看 ...

  3. 牛客多校第五场 B generator 1 矩阵快速幂

    题意: 给定$x_0,x_1,a,b,n,mod, x_i=a*x_{i-1}+b*x_{i-2}$ ,求$x_n % mod$ n最大有1e6位 题解: 矩阵快速幂. 巨大的n并不是障碍,写一个十进 ...

  4. 2019牛客多校第五场B generator 十进制快速幂

    generator 1 题意 给出\(x_0,x_1,a,b\)已知递推式\(x_i=a*x_{i-1}+b*x_{i-2}\),出个n和mod,求\(x_n\) (n特别大) 分析 比赛的时候失了智 ...

  5. 2019牛客多校第五场C generator 2(BSGS)题解

    题意: 传送门 已知递推公式\(x_i = a*x_{i - 1} + b\mod p\),\(p\)是素数,已知\(x_0,a,b,p\),给出一个\(n\)和\(v\),问你满足\(x_i = v ...

  6. 牛客多校第五场 F take

    链接:https://www.nowcoder.com/acm/contest/143/F来源:牛客网 题目描述 Kanade has n boxes , the i-th box has p[i] ...

  7. 牛客多校第五场 J:Plan

    链接:https://www.nowcoder.com/acm/contest/143/J 来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 262144K,其他语言524 ...

  8. 牛客多校第五场-D-inv

    链接:https://www.nowcoder.com/acm/contest/143/D来源:牛客网 题目描述 Kanade has an even number n and a permutati ...

  9. 牛客多校第五场 F take 期望转化成单独事件概率(模板) 树状数组

    链接:https://www.nowcoder.com/acm/contest/143/F来源:牛客网 Kanade has n boxes , the i-th box has p[i] proba ...

随机推荐

  1. 7行代码解决P1441砝码称重(附优化过程)

    先贴上最终代码感受一下: #include <bits/stdc++.h> using namespace std; int i, N, M, wi[21], res = 0; int m ...

  2. MATLAB图像处理_Bayer图像处理 & RGB Bayer Color分析

    Bayer图像处理   Bayer是相机内部的原始图片, 一般后缀名为.raw. 很多软件都可以查看, 比如PS. 我们相机拍照下来存储在存储卡上的.jpeg或其它格式的图片, 都是从.raw格式转化 ...

  3. Navicat 创建mysql存过、定时执行存过

    创建存过: 使用Navicat for MySQL工具创建存储过程步骤: 1. 新建函数(选择函数标签 -> 点击新建函数): 2.输入函数的参数个数.参数名.参数类型等: 3.编写存储过程: ...

  4. GStreamer各个包构建

    GStreamer按功能.维护的标准化程度.依赖库的版权差异等分了若干个包(package),如 gstreamer, gst-plugins-base, gst-plugins-good, gst- ...

  5. 关于Java客户端连接虚拟机中的Kafka时,无法发送、接收消息的问题

    kafka通过控制台模拟消息发送和消息接收正常,但是通过javaAPI操作生产者发送消息不成功 消费者接收不到数据解决方案? 1.问题排查 (1)首先通过在服务器上使用命令行来模拟生产.消费数据,发现 ...

  6. 京东热 key 探测框架新版发布,单机 QPS 可达 35 万

    https://mp.weixin.qq.com/s/3URAvUF6zwxeF5Kkc1aWHA 京东热 key 探测框架新版发布,单机 QPS 可达 35 万 原创 Hollis Hollis 2 ...

  7. Linux下编译安装源码包软件 configure ,make, make install, make test/check, make clean 假目标

    http://www.360doc7.net/wxarticlenew/541275971.html 一.程序的组成部分 Linux下程序大都是由以下几部分组成: 二进制文件:也就是可以运行的程序文件 ...

  8. 浅谈自动化构建之gulp

    一.gulp的基本使用 gulp是目前最流行的前端自动化构建系统,核心特点高效易用.(这块不过多的废话了,直接上干货了,有兴趣的话,可以查下gulp简介) 步骤如下: yarn init -y yar ...

  9. 「笔记」数位DP

    目录 写在前面 引入 求解 特判优化 代码 例题 「ZJOI2010」数字计数 「AHOI2009」同类分布 套路题们 「SDOI2014」数数 写在最后 写在前面 19 年前听 zlq 讲课的时候学 ...

  10. 使用 Shiro,从架构谈起,到框架集成!

    使用 Shiro,从架构谈起,到框架集成! 一.架构 1.使用用户的登录信息创建令牌 2.执行登陆动作 3.判断用户 4.两条重要的英文 二.实现Realm 1.缓存机制 2.散列算法与加密算法 3. ...