题意:

已知 \(X_i = a * X_{i - 1} + b * X_{i - 2}\),现给定\(X_0,X_1,a,b\),询问\(X^n \mod p\),其中\(n <= 10^{1e6}\)

思路:

显然这道题需要用到矩阵快速幂,但是因为\(n\)是百万位级别,直接快速幂复杂度为\(1e6 * log10 * 4 * C1\),超时。

所以我们可以用十进制矩阵快速幂,和二进制类似,复杂度为\(1e6 * 4 * C2\)。因为这里的\(n\)比较大,所以\(C2 < log10 * C1\)大概率发生。

代码:

#include<map>
#include<set>
#include<queue>
#include<cmath>
#include<stack>
#include<ctime>
#include<string>
#include<vector>
#include<cstdio>
#include<cstring>
#include<sstream>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxn = 1e6 + 5;
const int INF = 0x3f3f3f3f;
const ull seed = 11;
const int MOD = 1e9 + 7;
using namespace std;
char s[maxn];
ll x0, x1, a, b, mod;
struct Mat{
ll s[2][2];
void init(){
for(int i = 0; i < 2; i++)
for(int j = 0; j < 2; j++)
s[i][j] = 0;
}
};
inline Mat pmul(Mat a, Mat b){
Mat t;
t.init();
for(int i = 0; i < 2; i++){
for(int j = 0; j < 2; j++){
for(int k = 0; k < 2; k++){
t.s[i][j] = (t.s[i][j] + a.s[i][k] * b.s[k][j]) % mod;
}
}
}
return t;
}
inline Mat ppow(Mat a, int b){
Mat ret;
ret.init();
for(int i = 0; i < 2; i++) ret.s[i][i] = 1;
while(b){
if(b & 1) ret = pmul(ret, a);
a = pmul(a, a);
b >>= 1;
}
return ret;
}
inline Mat power(Mat a, char *s, int n){
Mat ret;
ret.init();
for(int i = 0; i < 2; i++) ret.s[i][i] = 1;
for(int i = n; i >= 1; i--){
int x = s[i] - '0';
if(x) ret = pmul(ret, ppow(a, x));
a = ppow(a, 10);
}
return ret;
}
int main(){
scanf("%lld%lld%lld%lld", &x0, &x1, &a, &b);
scanf("%s%lld", s + 1, &mod);
int n = strlen(s + 1);
Mat ans, t;
ans.init();
ans.s[0][0] = x1, ans.s[0][1] = x0;
t.s[0][0] = a, t.s[0][1] = 1, t.s[1][0] = b, t.s[1][1] = 0;
t = power(t, s, n);
ans = pmul(ans, t);
printf("%lld\n", ans.s[0][1]);
return 0;
}

牛客多校第五场B generator1(十进制矩阵快速幂)题解的更多相关文章

  1. generator 1(2019年牛客多校第五场B题+十进制矩阵快速幂)

    目录 题目链接 思路 代码 题目链接 传送门 思路 十进制矩阵快速幂. 代码 #include <set> #include <map> #include <deque& ...

  2. 2019牛客多校第五场 B - generator 1 矩阵快速幂+十倍增+二进制倍增优化

    B - generator 1 题意 给你\(x_{0}.x_{1}.a.b.b.mod\),根据\(x_{i} = a*x_{i-1} + b*x_{i-2}\)求出\(x_{n}\) 思路 一般看 ...

  3. 牛客多校第五场 B generator 1 矩阵快速幂

    题意: 给定$x_0,x_1,a,b,n,mod, x_i=a*x_{i-1}+b*x_{i-2}$ ,求$x_n % mod$ n最大有1e6位 题解: 矩阵快速幂. 巨大的n并不是障碍,写一个十进 ...

  4. 2019牛客多校第五场B generator 十进制快速幂

    generator 1 题意 给出\(x_0,x_1,a,b\)已知递推式\(x_i=a*x_{i-1}+b*x_{i-2}\),出个n和mod,求\(x_n\) (n特别大) 分析 比赛的时候失了智 ...

  5. 2019牛客多校第五场C generator 2(BSGS)题解

    题意: 传送门 已知递推公式\(x_i = a*x_{i - 1} + b\mod p\),\(p\)是素数,已知\(x_0,a,b,p\),给出一个\(n\)和\(v\),问你满足\(x_i = v ...

  6. 牛客多校第五场 F take

    链接:https://www.nowcoder.com/acm/contest/143/F来源:牛客网 题目描述 Kanade has n boxes , the i-th box has p[i] ...

  7. 牛客多校第五场 J:Plan

    链接:https://www.nowcoder.com/acm/contest/143/J 来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 262144K,其他语言524 ...

  8. 牛客多校第五场-D-inv

    链接:https://www.nowcoder.com/acm/contest/143/D来源:牛客网 题目描述 Kanade has an even number n and a permutati ...

  9. 牛客多校第五场 F take 期望转化成单独事件概率(模板) 树状数组

    链接:https://www.nowcoder.com/acm/contest/143/F来源:牛客网 Kanade has n boxes , the i-th box has p[i] proba ...

随机推荐

  1. CF625E Frog Fights

    有\(n\)只青蛙在一个长度为\(m\)的环上打架:每只青蛙有一个初始位置\(p_i\),和一个跳跃数值\(a_i\).从\(1\)号青蛙开始按序号循环行动,每次若第\(i\)只青蛙行动,则它会向前跳 ...

  2. mybatis源码解析之架构理解

    mybatis是一个非常优秀的开源orm框架,在大型的互联网公司,基本上都会用到,而像程序员的圣地-阿里虽然用的是自己开发的一套框架,但其核心思想也无外乎这些,因此,去一些大型互联网公司面试的时候,总 ...

  3. 阿姆达尔定律 Amdahl's law

    Amdahl's law - Wikipedia https://en.wikipedia.org/wiki/Amdahl%27s_law 阿姆达尔定律(英语:Amdahl's law,Amdahl' ...

  4. 键相同,比较两个map中的值是否相同

    获取.排序.比较两个Map中相同key对应value值 /** * * @param hashMap 原数据 * @param hashMap2 需要比较的数据 * @return */ privat ...

  5. codevs1700 施工方案第二季

    题目描述 Description c国边防军在边境某处的阵地是由n个地堡组成的.工兵连受命来到阵地要进行两期施工. 第一期的任务是挖掘暗道让所有地堡互联互通.现已勘测设计了m条互不相交的暗道挖掘方案, ...

  6. codevs 1344 模拟退火

    1344 线型网络  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamo   题目描述 Description 有 N ( <=20 ) 台 PC 放在机房内 ...

  7. 学习SpringBoot,整合全网各种优秀资源,SpringBoot基础,中间件,优质项目,博客资源等,仅供个人学习SpringBoot使用

    学习SpringBoot,整合全网各种优秀资源,SpringBoot基础,中间件,优质项目,博客资源等,仅供个人学习SpringBoot使用 一.SpringBoot系列教程 二.SpringBoot ...

  8. Idea里面远程提交spark任务到yarn集群

    Idea里面远程提交spark任务到yarn集群 1.本地idea远程提交到yarn集群 2.运行过程中可能会遇到的问题 2.1首先需要把yarn-site.xml,core-site.xml,hdf ...

  9. java架构《并发线程中级篇》

    java多线程的三大设计模式 本章主要记录java常见的三大设计模式,Future.Master-Worker和生产者-消费者模式. 一.Future模式 使用场景:数据可以不及时返回,到下一次实际要 ...

  10. codeblocks下载安装及快捷键

    100MB的下载链接:自带mingw  http://pan.baidu.com/s/1o6BgFP4  13.12版本  gcc 4.7.1的 这是windows版本的 linux下编译安装:参考: ...