题意:

已知 \(X_i = a * X_{i - 1} + b * X_{i - 2}\),现给定\(X_0,X_1,a,b\),询问\(X^n \mod p\),其中\(n <= 10^{1e6}\)

思路:

显然这道题需要用到矩阵快速幂,但是因为\(n\)是百万位级别,直接快速幂复杂度为\(1e6 * log10 * 4 * C1\),超时。

所以我们可以用十进制矩阵快速幂,和二进制类似,复杂度为\(1e6 * 4 * C2\)。因为这里的\(n\)比较大,所以\(C2 < log10 * C1\)大概率发生。

代码:

#include<map>
#include<set>
#include<queue>
#include<cmath>
#include<stack>
#include<ctime>
#include<string>
#include<vector>
#include<cstdio>
#include<cstring>
#include<sstream>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxn = 1e6 + 5;
const int INF = 0x3f3f3f3f;
const ull seed = 11;
const int MOD = 1e9 + 7;
using namespace std;
char s[maxn];
ll x0, x1, a, b, mod;
struct Mat{
ll s[2][2];
void init(){
for(int i = 0; i < 2; i++)
for(int j = 0; j < 2; j++)
s[i][j] = 0;
}
};
inline Mat pmul(Mat a, Mat b){
Mat t;
t.init();
for(int i = 0; i < 2; i++){
for(int j = 0; j < 2; j++){
for(int k = 0; k < 2; k++){
t.s[i][j] = (t.s[i][j] + a.s[i][k] * b.s[k][j]) % mod;
}
}
}
return t;
}
inline Mat ppow(Mat a, int b){
Mat ret;
ret.init();
for(int i = 0; i < 2; i++) ret.s[i][i] = 1;
while(b){
if(b & 1) ret = pmul(ret, a);
a = pmul(a, a);
b >>= 1;
}
return ret;
}
inline Mat power(Mat a, char *s, int n){
Mat ret;
ret.init();
for(int i = 0; i < 2; i++) ret.s[i][i] = 1;
for(int i = n; i >= 1; i--){
int x = s[i] - '0';
if(x) ret = pmul(ret, ppow(a, x));
a = ppow(a, 10);
}
return ret;
}
int main(){
scanf("%lld%lld%lld%lld", &x0, &x1, &a, &b);
scanf("%s%lld", s + 1, &mod);
int n = strlen(s + 1);
Mat ans, t;
ans.init();
ans.s[0][0] = x1, ans.s[0][1] = x0;
t.s[0][0] = a, t.s[0][1] = 1, t.s[1][0] = b, t.s[1][1] = 0;
t = power(t, s, n);
ans = pmul(ans, t);
printf("%lld\n", ans.s[0][1]);
return 0;
}

牛客多校第五场B generator1(十进制矩阵快速幂)题解的更多相关文章

  1. generator 1(2019年牛客多校第五场B题+十进制矩阵快速幂)

    目录 题目链接 思路 代码 题目链接 传送门 思路 十进制矩阵快速幂. 代码 #include <set> #include <map> #include <deque& ...

  2. 2019牛客多校第五场 B - generator 1 矩阵快速幂+十倍增+二进制倍增优化

    B - generator 1 题意 给你\(x_{0}.x_{1}.a.b.b.mod\),根据\(x_{i} = a*x_{i-1} + b*x_{i-2}\)求出\(x_{n}\) 思路 一般看 ...

  3. 牛客多校第五场 B generator 1 矩阵快速幂

    题意: 给定$x_0,x_1,a,b,n,mod, x_i=a*x_{i-1}+b*x_{i-2}$ ,求$x_n % mod$ n最大有1e6位 题解: 矩阵快速幂. 巨大的n并不是障碍,写一个十进 ...

  4. 2019牛客多校第五场B generator 十进制快速幂

    generator 1 题意 给出\(x_0,x_1,a,b\)已知递推式\(x_i=a*x_{i-1}+b*x_{i-2}\),出个n和mod,求\(x_n\) (n特别大) 分析 比赛的时候失了智 ...

  5. 2019牛客多校第五场C generator 2(BSGS)题解

    题意: 传送门 已知递推公式\(x_i = a*x_{i - 1} + b\mod p\),\(p\)是素数,已知\(x_0,a,b,p\),给出一个\(n\)和\(v\),问你满足\(x_i = v ...

  6. 牛客多校第五场 F take

    链接:https://www.nowcoder.com/acm/contest/143/F来源:牛客网 题目描述 Kanade has n boxes , the i-th box has p[i] ...

  7. 牛客多校第五场 J:Plan

    链接:https://www.nowcoder.com/acm/contest/143/J 来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 262144K,其他语言524 ...

  8. 牛客多校第五场-D-inv

    链接:https://www.nowcoder.com/acm/contest/143/D来源:牛客网 题目描述 Kanade has an even number n and a permutati ...

  9. 牛客多校第五场 F take 期望转化成单独事件概率(模板) 树状数组

    链接:https://www.nowcoder.com/acm/contest/143/F来源:牛客网 Kanade has n boxes , the i-th box has p[i] proba ...

随机推荐

  1. Typora+PicGo+Gitee打造图床

    前言 ​ 自己一直使用的是Typora来写博客,但比较麻烦的是图片粘贴上去后都是存储到了本地,写好了之后放到博客园等地,图片不能直接访问,但如今Typora已经支持图片上传,所以搞了一波图片上传到Gi ...

  2. 配接Cisco设备

  3. 阿里云弹性公网IP那些事 阿里云云栖号 6月1日 弹性公网IP是独立的公网IP资源,可以绑定到阿里云专有网络VPC类型的ECS、NAT网关、私网负载均衡SLB上,并可以动态解绑,实现公网IP和ECS、NAT网关、SLB的解耦,满足灵活管理的要求。阿里云弹性公网IP那些事 阿里云云栖号 6月1日 弹性络VPC类型的E

    阿里云弹性公网IP那些事 阿里云云栖号 6月1日 弹性公网IP是独立的公网关.私网负载均衡SLB上,并可以动态解绑,实现公网IP和ECS.NAT网关.SLB的解耦,满足灵活管理的要求.

  4. [Python]编码声明:是coding:utf-8还是coding=utf-8呢

    PEP 263 -- Defining Python Source Code Encodings | Python.org https://www.python.org/dev/peps/pep-02 ...

  5. 一致性哈希算法C#实现

    一致性hash实现,以下实现没有考虑多线程情况,也就是没有加锁,需要的可以自行加上.因为换行的问题,阅读不太方便,可以拷贝到本地再读. 1 /// <summary> 2 /// 一致性哈 ...

  6. 3分钟搞懂什么是WPF。

    先推荐下猛哥(刘铁猛)的书籍  <深入浅出WPF>. 一直以来,完美的用户体验是桌面应用程序和Web应用程序中的一大障碍.许多开发人员绞尽脑汁将界面设计得美观炫丽些.互 动感强些,但费了九 ...

  7. JVM 详解,大白话带你认识 JVM

    前言 如果在文中用词或者理解方面出现问题,欢迎指出.此文旨在提及而不深究,但会尽量效率地把知识点都抛出来 一.JVM的基本介绍 JVM 是 Java Virtual Machine 的缩写,它是一个虚 ...

  8. Node 使用webpack编写简单的前端应用

    编写目的 1. 使用 Node 依赖webpack.jQuery编写简单的前端应用. 操作步骤 (1)新建一个目录 $ mkdir simple-app-demo $ cd simple-app-de ...

  9. SpringMVC请求参数的获取方式

    一.GET请求参数获取 1. 通过HttpServletRequest获取参数 2. 直接方法参数获取 3. RequestParam注解方式获取请求参数 4. Bean方式获取参数 5. Model ...

  10. Spring|SpringMVC中的注解

    文章目录 一.Spring注解 @Controller @ResuController @Service @Autowired @RequestMapping @RequestParam @Model ...