牛客多校第五场B generator1(十进制矩阵快速幂)题解
题意:
已知 \(X_i = a * X_{i - 1} + b * X_{i - 2}\),现给定\(X_0,X_1,a,b\),询问\(X^n \mod p\),其中\(n <= 10^{1e6}\)
思路:
显然这道题需要用到矩阵快速幂,但是因为\(n\)是百万位级别,直接快速幂复杂度为\(1e6 * log10 * 4 * C1\),超时。
所以我们可以用十进制矩阵快速幂,和二进制类似,复杂度为\(1e6 * 4 * C2\)。因为这里的\(n\)比较大,所以\(C2 < log10 * C1\)大概率发生。
代码:
#include<map>
#include<set>
#include<queue>
#include<cmath>
#include<stack>
#include<ctime>
#include<string>
#include<vector>
#include<cstdio>
#include<cstring>
#include<sstream>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxn = 1e6 + 5;
const int INF = 0x3f3f3f3f;
const ull seed = 11;
const int MOD = 1e9 + 7;
using namespace std;
char s[maxn];
ll x0, x1, a, b, mod;
struct Mat{
ll s[2][2];
void init(){
for(int i = 0; i < 2; i++)
for(int j = 0; j < 2; j++)
s[i][j] = 0;
}
};
inline Mat pmul(Mat a, Mat b){
Mat t;
t.init();
for(int i = 0; i < 2; i++){
for(int j = 0; j < 2; j++){
for(int k = 0; k < 2; k++){
t.s[i][j] = (t.s[i][j] + a.s[i][k] * b.s[k][j]) % mod;
}
}
}
return t;
}
inline Mat ppow(Mat a, int b){
Mat ret;
ret.init();
for(int i = 0; i < 2; i++) ret.s[i][i] = 1;
while(b){
if(b & 1) ret = pmul(ret, a);
a = pmul(a, a);
b >>= 1;
}
return ret;
}
inline Mat power(Mat a, char *s, int n){
Mat ret;
ret.init();
for(int i = 0; i < 2; i++) ret.s[i][i] = 1;
for(int i = n; i >= 1; i--){
int x = s[i] - '0';
if(x) ret = pmul(ret, ppow(a, x));
a = ppow(a, 10);
}
return ret;
}
int main(){
scanf("%lld%lld%lld%lld", &x0, &x1, &a, &b);
scanf("%s%lld", s + 1, &mod);
int n = strlen(s + 1);
Mat ans, t;
ans.init();
ans.s[0][0] = x1, ans.s[0][1] = x0;
t.s[0][0] = a, t.s[0][1] = 1, t.s[1][0] = b, t.s[1][1] = 0;
t = power(t, s, n);
ans = pmul(ans, t);
printf("%lld\n", ans.s[0][1]);
return 0;
}
牛客多校第五场B generator1(十进制矩阵快速幂)题解的更多相关文章
- generator 1(2019年牛客多校第五场B题+十进制矩阵快速幂)
目录 题目链接 思路 代码 题目链接 传送门 思路 十进制矩阵快速幂. 代码 #include <set> #include <map> #include <deque& ...
- 2019牛客多校第五场 B - generator 1 矩阵快速幂+十倍增+二进制倍增优化
B - generator 1 题意 给你\(x_{0}.x_{1}.a.b.b.mod\),根据\(x_{i} = a*x_{i-1} + b*x_{i-2}\)求出\(x_{n}\) 思路 一般看 ...
- 牛客多校第五场 B generator 1 矩阵快速幂
题意: 给定$x_0,x_1,a,b,n,mod, x_i=a*x_{i-1}+b*x_{i-2}$ ,求$x_n % mod$ n最大有1e6位 题解: 矩阵快速幂. 巨大的n并不是障碍,写一个十进 ...
- 2019牛客多校第五场B generator 十进制快速幂
generator 1 题意 给出\(x_0,x_1,a,b\)已知递推式\(x_i=a*x_{i-1}+b*x_{i-2}\),出个n和mod,求\(x_n\) (n特别大) 分析 比赛的时候失了智 ...
- 2019牛客多校第五场C generator 2(BSGS)题解
题意: 传送门 已知递推公式\(x_i = a*x_{i - 1} + b\mod p\),\(p\)是素数,已知\(x_0,a,b,p\),给出一个\(n\)和\(v\),问你满足\(x_i = v ...
- 牛客多校第五场 F take
链接:https://www.nowcoder.com/acm/contest/143/F来源:牛客网 题目描述 Kanade has n boxes , the i-th box has p[i] ...
- 牛客多校第五场 J:Plan
链接:https://www.nowcoder.com/acm/contest/143/J 来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 262144K,其他语言524 ...
- 牛客多校第五场-D-inv
链接:https://www.nowcoder.com/acm/contest/143/D来源:牛客网 题目描述 Kanade has an even number n and a permutati ...
- 牛客多校第五场 F take 期望转化成单独事件概率(模板) 树状数组
链接:https://www.nowcoder.com/acm/contest/143/F来源:牛客网 Kanade has n boxes , the i-th box has p[i] proba ...
随机推荐
- 7行代码解决P1441砝码称重(附优化过程)
先贴上最终代码感受一下: #include <bits/stdc++.h> using namespace std; int i, N, M, wi[21], res = 0; int m ...
- MATLAB图像处理_Bayer图像处理 & RGB Bayer Color分析
Bayer图像处理 Bayer是相机内部的原始图片, 一般后缀名为.raw. 很多软件都可以查看, 比如PS. 我们相机拍照下来存储在存储卡上的.jpeg或其它格式的图片, 都是从.raw格式转化 ...
- Navicat 创建mysql存过、定时执行存过
创建存过: 使用Navicat for MySQL工具创建存储过程步骤: 1. 新建函数(选择函数标签 -> 点击新建函数): 2.输入函数的参数个数.参数名.参数类型等: 3.编写存储过程: ...
- GStreamer各个包构建
GStreamer按功能.维护的标准化程度.依赖库的版权差异等分了若干个包(package),如 gstreamer, gst-plugins-base, gst-plugins-good, gst- ...
- 关于Java客户端连接虚拟机中的Kafka时,无法发送、接收消息的问题
kafka通过控制台模拟消息发送和消息接收正常,但是通过javaAPI操作生产者发送消息不成功 消费者接收不到数据解决方案? 1.问题排查 (1)首先通过在服务器上使用命令行来模拟生产.消费数据,发现 ...
- 京东热 key 探测框架新版发布,单机 QPS 可达 35 万
https://mp.weixin.qq.com/s/3URAvUF6zwxeF5Kkc1aWHA 京东热 key 探测框架新版发布,单机 QPS 可达 35 万 原创 Hollis Hollis 2 ...
- Linux下编译安装源码包软件 configure ,make, make install, make test/check, make clean 假目标
http://www.360doc7.net/wxarticlenew/541275971.html 一.程序的组成部分 Linux下程序大都是由以下几部分组成: 二进制文件:也就是可以运行的程序文件 ...
- 浅谈自动化构建之gulp
一.gulp的基本使用 gulp是目前最流行的前端自动化构建系统,核心特点高效易用.(这块不过多的废话了,直接上干货了,有兴趣的话,可以查下gulp简介) 步骤如下: yarn init -y yar ...
- 「笔记」数位DP
目录 写在前面 引入 求解 特判优化 代码 例题 「ZJOI2010」数字计数 「AHOI2009」同类分布 套路题们 「SDOI2014」数数 写在最后 写在前面 19 年前听 zlq 讲课的时候学 ...
- 使用 Shiro,从架构谈起,到框架集成!
使用 Shiro,从架构谈起,到框架集成! 一.架构 1.使用用户的登录信息创建令牌 2.执行登陆动作 3.判断用户 4.两条重要的英文 二.实现Realm 1.缓存机制 2.散列算法与加密算法 3. ...