题意:

已知 \(X_i = a * X_{i - 1} + b * X_{i - 2}\),现给定\(X_0,X_1,a,b\),询问\(X^n \mod p\),其中\(n <= 10^{1e6}\)

思路:

显然这道题需要用到矩阵快速幂,但是因为\(n\)是百万位级别,直接快速幂复杂度为\(1e6 * log10 * 4 * C1\),超时。

所以我们可以用十进制矩阵快速幂,和二进制类似,复杂度为\(1e6 * 4 * C2\)。因为这里的\(n\)比较大,所以\(C2 < log10 * C1\)大概率发生。

代码:

#include<map>
#include<set>
#include<queue>
#include<cmath>
#include<stack>
#include<ctime>
#include<string>
#include<vector>
#include<cstdio>
#include<cstring>
#include<sstream>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxn = 1e6 + 5;
const int INF = 0x3f3f3f3f;
const ull seed = 11;
const int MOD = 1e9 + 7;
using namespace std;
char s[maxn];
ll x0, x1, a, b, mod;
struct Mat{
ll s[2][2];
void init(){
for(int i = 0; i < 2; i++)
for(int j = 0; j < 2; j++)
s[i][j] = 0;
}
};
inline Mat pmul(Mat a, Mat b){
Mat t;
t.init();
for(int i = 0; i < 2; i++){
for(int j = 0; j < 2; j++){
for(int k = 0; k < 2; k++){
t.s[i][j] = (t.s[i][j] + a.s[i][k] * b.s[k][j]) % mod;
}
}
}
return t;
}
inline Mat ppow(Mat a, int b){
Mat ret;
ret.init();
for(int i = 0; i < 2; i++) ret.s[i][i] = 1;
while(b){
if(b & 1) ret = pmul(ret, a);
a = pmul(a, a);
b >>= 1;
}
return ret;
}
inline Mat power(Mat a, char *s, int n){
Mat ret;
ret.init();
for(int i = 0; i < 2; i++) ret.s[i][i] = 1;
for(int i = n; i >= 1; i--){
int x = s[i] - '0';
if(x) ret = pmul(ret, ppow(a, x));
a = ppow(a, 10);
}
return ret;
}
int main(){
scanf("%lld%lld%lld%lld", &x0, &x1, &a, &b);
scanf("%s%lld", s + 1, &mod);
int n = strlen(s + 1);
Mat ans, t;
ans.init();
ans.s[0][0] = x1, ans.s[0][1] = x0;
t.s[0][0] = a, t.s[0][1] = 1, t.s[1][0] = b, t.s[1][1] = 0;
t = power(t, s, n);
ans = pmul(ans, t);
printf("%lld\n", ans.s[0][1]);
return 0;
}

牛客多校第五场B generator1(十进制矩阵快速幂)题解的更多相关文章

  1. generator 1(2019年牛客多校第五场B题+十进制矩阵快速幂)

    目录 题目链接 思路 代码 题目链接 传送门 思路 十进制矩阵快速幂. 代码 #include <set> #include <map> #include <deque& ...

  2. 2019牛客多校第五场 B - generator 1 矩阵快速幂+十倍增+二进制倍增优化

    B - generator 1 题意 给你\(x_{0}.x_{1}.a.b.b.mod\),根据\(x_{i} = a*x_{i-1} + b*x_{i-2}\)求出\(x_{n}\) 思路 一般看 ...

  3. 牛客多校第五场 B generator 1 矩阵快速幂

    题意: 给定$x_0,x_1,a,b,n,mod, x_i=a*x_{i-1}+b*x_{i-2}$ ,求$x_n % mod$ n最大有1e6位 题解: 矩阵快速幂. 巨大的n并不是障碍,写一个十进 ...

  4. 2019牛客多校第五场B generator 十进制快速幂

    generator 1 题意 给出\(x_0,x_1,a,b\)已知递推式\(x_i=a*x_{i-1}+b*x_{i-2}\),出个n和mod,求\(x_n\) (n特别大) 分析 比赛的时候失了智 ...

  5. 2019牛客多校第五场C generator 2(BSGS)题解

    题意: 传送门 已知递推公式\(x_i = a*x_{i - 1} + b\mod p\),\(p\)是素数,已知\(x_0,a,b,p\),给出一个\(n\)和\(v\),问你满足\(x_i = v ...

  6. 牛客多校第五场 F take

    链接:https://www.nowcoder.com/acm/contest/143/F来源:牛客网 题目描述 Kanade has n boxes , the i-th box has p[i] ...

  7. 牛客多校第五场 J:Plan

    链接:https://www.nowcoder.com/acm/contest/143/J 来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 262144K,其他语言524 ...

  8. 牛客多校第五场-D-inv

    链接:https://www.nowcoder.com/acm/contest/143/D来源:牛客网 题目描述 Kanade has an even number n and a permutati ...

  9. 牛客多校第五场 F take 期望转化成单独事件概率(模板) 树状数组

    链接:https://www.nowcoder.com/acm/contest/143/F来源:牛客网 Kanade has n boxes , the i-th box has p[i] proba ...

随机推荐

  1. JAVA之路_假克隆、浅克隆、深克隆

    一.JAVA假克隆 Java中,对于基本类型,可以用"="进行克隆,而对于引用类型却不能简单的使用"="进行克隆,这与JAVA的内存使用空间有关,JAVA在栈中 ...

  2. 特斯拉Toolbox诊断检测仪工具Tesla诊断电脑 Tesla Toolbox

    Tesla特斯拉Toolbox诊断工具Tesla诊断电脑检测仪 Tesla Toolbox, Tesla Toolbox Diagnostic Tester.Language: English,Deu ...

  3. 【分享】每个 Web 开发者在 2021 年必须拥有 15 个 VSCode 扩展

    为什么VSCode如此受欢迎 Visual Studio Code在开发人员中迅速流行起来,它是最流行的开发环境,可定制性是其流行的原因之一. 因此,如果你正在使用VSCode,这里有一个扩展列表,你 ...

  4. MariaDB(selec的使用)

      --查询基本使用 -- 查询所有列 --select * from 表名 select * from students;   --一定条件查询 select * from students whe ...

  5. OAuth2.0是干什么的?

    OAuth2.0是干什么的? 首先用户有一些数据: 将数据存储在服务器上: 这时候有一个应用要访问数据: 如果这个应用是一个恶意程序呢?所以需要一个检验来判断请求是不是安全的: 如何判断是不是安全的? ...

  6. java画海报二维码

    package cn.com.yitong.ares.qrcode; import java.awt.BasicStroke;import java.awt.Color;import java.awt ...

  7. 游戏中的AOI(Area of Interest)算法

    游戏中的AOI(Area of Interest)算法 游戏的AOI算法应该算作游戏的基础核心了,许多逻辑都是因为AOI进出事件驱动的,许多网络同步数据也是因为AOI进出事件产生的.因此,良好的AOI ...

  8. Java SPI 与 Dubbo SPI

    SPI(Service Provider Interface)是JDK内置的一种服务提供发现机制.本质是将接口实现类的全限定名配置在文件中,并由服务加载器读取配置文件,加载实现类.这样可以在运行时,动 ...

  9. Elasticsearch--ES-Head--docker版安装

    1.0ElasticSearch安装 # 拉取ES镜像docker pull elasticsearch:6.5.0 # 设置vm.max_map_count大小sysctl -w vm.max_ma ...

  10. 2021最新WordPress安装教程(一):Centos7安装Apache

    一转眼2020年已经过去了,看网络上很多WordPress的安装教程都比较旧,有些写的不太详细,WordPress是站长最喜欢的一款建站系统,数据统计到2020年为止,WordPress在所有网站的市 ...