熟练剖分(tree) 树形DP

题目描述

题目传送门

分析

我们设\(f[i][j]\)为以\(i\)为根节点的子树中最坏时间复杂度小于等于\(j\)的概率

设\(g[i][j]\)为当前扫到的以\(i\)为父亲节点的所有儿子最坏时间复杂度小于等于\(j\)的概率之和

因为每遍历到一个新的节点,原来的\(g\)数组中的值就要全部更新,因此我们压掉第一维

下面我们考虑转移

对于当前枚举到的某一个节点,我们用三重循环分别扫一边

第一重循环代表当前哪一个节点充当重儿子,第二重循环枚举所有儿子,第三充循环枚举最坏时间复杂度\(k\)

如果第二重循环中枚举的儿子恰好是重儿子的话,那么父亲节点的最坏时间复杂度为\(k\)的情况可以由两种情况转移过来

第一种情况就是重儿子的时间复杂度恰好为\(k\)的概率乘上其它儿子时间复杂度小于等于\(k\)的概率

第二种情况就是其它儿子的时间复杂度恰好为\(k\)的概率乘上重儿子的时间复杂度小于等于\(k\)的概率

不要忘了减去重复的情况

如果第二重循环中枚举的儿子不是重儿子的话,那么父亲节点的最坏时间复杂度为\(k\)的情况可以由两种情况转移过来

第一种情况就是重儿子的时间复杂度恰好为\(k-1\)的概率乘上其它儿子时间复杂度小于等于\(k\)的概率

第二种情况就是其它儿子的时间复杂度恰好为\(k\)的概率乘上重儿子的时间复杂度小于等于\(k-1\)的概率

也不要忘了减去重复的情况

代码

#include<cstdio>
#include<cstring>
#include<vector>
inline int read(){
int x=0,fh=1;
char ch=getchar();
while(ch<'0' || ch>'9'){
if(ch=='-') fh=-1;
ch=getchar();
}
while(ch>='0' && ch<='9'){
x=(x<<1)+(x<<3)+(ch^48);
ch=getchar();
}
return x*fh;
}
const int maxn=3e3+5;
const int mod=1e9+7;
int fa[maxn],head[maxn],tot=1,n,rt;
struct asd{
int to,next;
}b[maxn<<1];
void ad(int aa,int bb){
b[tot].to=bb;
b[tot].next=head[aa];
head[aa]=tot++;
}
int ksm(int ds,int zs){
int ans=1;
while(zs){
if(zs&1) ans=1LL*ans*ds%mod;
ds=1LL*ds*ds%mod;
zs>>=1;
}
return ans;
}
int son[maxn],siz[maxn];
long long f[maxn][maxn],g[maxn],h[maxn];
void dfs(int now){
siz[now]=1;
for(int i=head[now];i!=-1;i=b[i].next){
int u=b[i].to;
if(u==fa[now]) continue;
dfs(u);
siz[now]+=siz[u];
}
int p=ksm(son[now],mod-2);
for(int i=head[now];i!=-1;i=b[i].next){
if(b[i].to==fa[now]) continue;
for(int j=0;j<=n;j++) g[j]=1;
//初始化g数组
int zez=b[i].to;
//枚举重儿子
for(int j=head[now];j!=-1;j=b[j].next){
if(b[j].to==fa[now]) continue;
int qez=b[j].to;
//枚举其它儿子
for(int k=0;k<=siz[qez]+1;k++){
//枚举最大时间复杂度
long long qt=g[k],xz=f[qez][k];
if(k) qt-=g[k-1],xz-=f[qez][k-1];
if(zez==qez){
h[k]=(qt*f[qez][k]%mod+xz*g[k]%mod-xz*qt%mod+mod)%mod;
} else {
xz=f[qez][k-1];
if(k>1) xz-=f[qez][k-2];
h[k]=(qt*f[qez][k-1]%mod+xz*g[k]%mod-xz*qt%mod+mod)%mod;
}
}
g[0]=h[0],h[0]=0;
for(int k=1;k<=siz[qez]+1;k++){
g[k]=(g[k-1]+h[k])%mod;
h[k]=0;
}
//h数组临时存储状态
}
for(int j=siz[now];j>=1;j--){
g[j]=(g[j]-g[j-1]+mod)%mod;
//将前缀和数组还原成正常数组
}
for(int j=0;j<=siz[now];j++){
f[now][j]=(f[now][j]+g[j]*p%mod)%mod;
}
}
if(son[now]==0) f[now][0]=1;
for(int i=1;i<=siz[now]+1;i++){
f[now][i]=(f[now][i]+f[now][i-1])%mod;
}
}
int main(){
memset(head,-1,sizeof(head));
n=read();
int aa;
for(int i=1;i<=n;i++){
son[i]=read();
for(int j=1;j<=son[i];j++){
aa=read(),fa[aa]=i;
ad(i,aa),ad(aa,i);
}
}
rt=1;
while(fa[rt]) rt=fa[rt];
dfs(rt);
long long ans=0;
for(int i=1;i<=n;i++){
ans=(ans+i*(f[rt][i]-f[rt][i-1]+mod)%mod)%mod;
}
printf("%lld\n",ans);
return 0;
}

熟练剖分(tree) 树形DP的更多相关文章

  1. 【模拟7.14】B. 熟练剖分(tree) (概率DP)

    一道概率神题,考试时没读清题考完看了学长的玄学题解看了好几个小时 首先f[i][j]表示在点 i 为根的子树中,向下最长轻链长度小于等于 j 的概率. 首先递归下去并求出子树大小,然后枚举重儿子,枚举 ...

  2. 20210501 序列,熟练剖分(tree),建造游乐园(play)

    考场 \(65+5+0\),并列 rk2 最高分 \(55+10+10\) T1:等比数列可以写作 \(q^kx\),发现 \(q\le1000\) 且有一档分为 \(a_i\le100\),想到 \ ...

  3. 长链剖分优化树形DP总结

    长链剖分 规定若\(x\)为叶结点,则\(len[x]=1\). 否则定义\(preferredchild[x]\)(以下简称\(pc[x]\),称\(pc[x]\)为\(x\)的长儿子)为\(x\) ...

  4. hdu-5834 Magic boy Bi Luo with his excited tree(树形dp)

    题目链接: Magic boy Bi Luo with his excited tree Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: ...

  5. CF 461B Appleman and Tree 树形DP

    Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other ...

  6. codeforces 161D Distance in Tree 树形dp

    题目链接: http://codeforces.com/contest/161/problem/D D. Distance in Tree time limit per test 3 secondsm ...

  7. hdu6035 Colorful Tree 树形dp 给定一棵树,每个节点有一个颜色值。定义每条路径的值为经过的节点的不同颜色数。求所有路径的值和。

    /** 题目:hdu6035 Colorful Tree 链接:http://acm.hdu.edu.cn/showproblem.php?pid=6035 题意:给定一棵树,每个节点有一个颜色值.定 ...

  8. 5.10 省选模拟赛 tree 树形dp 逆元

    LINK:tree 整场比赛看起来最不可做 确是最简单的题目. 感觉很难写 不过单独考虑某个点 容易想到树形dp的状态. 设f[x]表示以x为根的子树内有黑边的方案数. 白边方案只有一种所以不用记录. ...

  9. Codeforces Round #263 Div.1 B Appleman and Tree --树形DP【转】

    题意:给了一棵树以及每个节点的颜色,1代表黑,0代表白,求将这棵树拆成k棵树,使得每棵树恰好有一个黑色节点的方法数 解法:树形DP问题.定义: dp[u][0]表示以u为根的子树对父亲的贡献为0 dp ...

随机推荐

  1. OAuth2.0-3客户端授权放到数据库

    授权得客户端信息.授权码信息全都存在数据库 1.建表 官方给了个sql文件:https://github.com/spring-projects/spring-security-oauth/blob/ ...

  2. 一个简单的CPP处理框架

    好久没有在csdn上写过东西了,这么多年,一方面是工作忙,下班到家也没有开过电脑了,要陪小孩玩: 下面分享一段代码,是用CPP做的一个简单的消息(协议)处理框架: 是通过成员函数指针+map来实现的: ...

  3. Python库大全,建议收藏留用!

    学Python,想必大家都是从爬虫开始的吧.毕竟网上类似的资源很丰富,开源项目也非常多. 很多人学习python,不知道从何学起.很多人学习python,掌握了基本语法过后,不知道在哪里寻找案例上手. ...

  4. 12、Decorator 装饰器 模式 装饰起来美美哒 结构型设计模式

    1.Decorator模式 装饰模式又名包装(Wrapper)模式.装饰模式以对客户端透明的方式扩展对象的功能,是继承关系的一个替代方案. 装饰器模式(Decorator Pattern)允许向一个现 ...

  5. Hexo博客部署到远程仓库(Conding、Gitee、Github)

    一.本地环境搭建 1.安装Git Git可以有效.高速的处理各种项目版本管理.也就是用来管理你的hexo博客文章,上传到GitHub的工具. Git下载地址 安装好了之后使用git -version查 ...

  6. 关于Springboot配置文件的理解

    一.Springboot Springboot是用来简化Spring框架搭建和开发一款框架,可以理解为是一种Spring框架的简化版. 二.如何在IDEA里面初始化Springboot 主要可以分为两 ...

  7. 图计算实现ID_Mapping、Oneid打通数据孤岛

    图计算实现ID_Mapping.Oneid打通数据孤岛 ID_Mapping与Oneid的作用 大神告诉我们Oneid能用来做什么 输入数据源格式样例 实现原理 当日代码生成 引用jar包 启动命令 ...

  8. JavaScript 防抖(debounce)和节流(throttle)

    防抖函数 触发高频事件后,n秒内函数只会执行一次,如果n秒内高频事件再次被触发,则重新计算时间 /** * * @param {*} fn :callback function * @param {* ...

  9. 聊聊mysql中的int(1)

    昨天有个读者问了我这样一个问题在mysql中建表的时候,我设置一个字段为int类型,长度为1,但是我发现这个字段却可以存储任意长度的数字,这是什么情况?这个问题在我刚接触数据库的时候也遇到过,我觉得有 ...

  10. 可以用命令行控制eclipse断点增加删除、远程调试创建与启动的插件

    java # 创建断点(支持条件断点) curl -X PUT -H "Content-Type:application/json" --data '{"language ...