题面:

传送门

B. Teamwork

Input file: standard input
Output file: standard output
Time limit: 1 second
Memory limit: 256 megabytes
 
For his favorite holiday, Farmer John wants to send presents to his friends. Since he isn’t very good at wrapping presents, he wants to enlist the help of his cows. As you might expect, cows are not much better at wrapping presents themselves, a lesson Farmer John is about to learn the hard way. Farmer John’s N cows (1 ≤ N ≤ 10^4) are all standing in a row, conveniently numbered 1...N in order. Cow i has skill level si at wrapping presents. These skill levels might vary quite a bit, so FJ decides to combine his cows into teams. A team can consist of any consecutive set of up to K cows (1 ≤ K ≤ 10^3), and no cow can be part of more than one team. Since cows learn from each-other, the skill level of each cow on a team can be replaced by the skill level of the most-skilled cow on that team. Please help FJ determine the highest possible sum of skill levels he can achieve by optimally forming teams.
 
Input
The first line of input contains N and K. The next N lines contain the skill levels of the N cows in the order in which they are standing. Each skill level is a positive integer at most 105.
 
Output
Please print the highest possible sum of skill levels FJ can achieve by grouping appropriate consecutive sets of cows into teams.
 
Example
Input
7 3
1
15
7
9
2
5
10
Output
84
 
Note
In this example, the optimal solution is to group the first three cows and the last three cows, leaving the middle cow on a team by itself (remember that it is fine to have teams of size less than K). This effectively boosts the skill levels of the 7 cows to 15, 15, 15, 9, 10, 10, 10, which sums to 84.
 

题目描述:

有n头奶牛,我们可以让连续的奶牛组成一队,组队后队里所有奶牛的等级就会变成队里等级最高的那个,求n头奶牛经过组队后,所有奶牛的等级之和最大的是多少。一队奶牛的数量最多不超过C头牛。
 

题目分析:

这道题可以用动态规划解决:我们先重新定义这个问题:求前n头牛的等级之和最大值是多少?再看看这个问题的子问题:前i头牛的等级之和最大值是多少?(1 <= i <= n)会想到如何联系子问题和我们要求的题目问的问题,其实就是:我已经知道前i头牛的等级之和最大值是多少,然后通过这个计算出前n头牛的等级之和最大值是多少。然后,我们可以定义一个dp[i]数组来记录前i头牛的等级之和最大值,来通过利用dp[i]的值算出dp[n]。
 
我们具体看看样例怎样算:首先,我们已经知道dp[i](1 <= i <= 6)的值,求dp[7]。我们对最后一头牛,也就是第7头牛进行分类讨论:
 
1.第7头奶牛自己组成一队,那么,dp[7] = dp[6] + 10
 
 
2.第7头奶牛和前面的一头奶牛组成一队,那么,dp[7] = dp[5] + 10 * 2
 
 
3.第7头奶牛和前面的两头奶牛组成一队,那么,dp[7] = dp[4] + 10 * 3

然后选出最大的那种情况就可以了。
那么,dp[4], dp[5], dp[6]怎么求?我们可以用求dp[7]的方法同样求出这三个的值。
状态转移方程:dp[i] = max{ dp[i-j] + j * max level[k] ( i-j+1 <= k <= i ) }   
 
 
AC代码:
 
  1. 1 #include <cstdio>
  2. 2 #include <cstring>
  3. 3 #include <iostream>
  4. 4 #include <cmath>
  5. 5 #include <algorithm>
  6. 6 using namespace std;
  7. 7 const int maxn = 1e4+5;
  8. 8 const int maxk = 1e3+5;
  9. 9 int n, k;
  10. 10 int a[maxn];
  11. 11 int dp[maxn];
  12. 12
  13. 13 void test(){
  14. 14 cout << endl;
  15. 15 for(int i = 1; i <= n; i++){
  16. 16 printf("dp[%d] = %d\n", i, dp[i]);
  17. 17 }
  18. 18 }
  19. 19
  20. 20 int main(){
  21. 21 scanf("%d%d", &n, &k);
  22. 22 for(int i = 1; i <= n; i++) scanf("%d", &a[i]);
  23. 23
  24. 24
  25. 25 for(int i = 1; i <= n; i++){
  26. 26 int pre_max = 0;
  27. 27 for(int j = 1; j <= k; j++){
  28. 28 if(i >= j){
  29. 29 if(a[i-j+1] > pre_max) pre_max = a[i-j+1];
  30. 30 dp[i] = max(dp[i], dp[i-j]+pre_max*j);
  31. 31 }
  32. 32 }
  33. 33 }
  34. 34
  35. 35 //test();
  36. 36 printf("%d\n", dp[n]);
  37. 37 return 0;
  38. 38 }
 
 

2019 GDUT Rating Contest I : Problem B. Teamwork的更多相关文章

  1. 2019 GDUT Rating Contest II : Problem F. Teleportation

    题面: Problem F. Teleportation Input file: standard input Output file: standard output Time limit: 15 se ...

  2. 2019 GDUT Rating Contest III : Problem D. Lemonade Line

    题面: D. Lemonade Line Input file: standard input Output file: standard output Time limit: 1 second Memo ...

  3. 2019 GDUT Rating Contest I : Problem H. Mixing Milk

    题面: H. Mixing Milk Input file: standard input Output file: standard output Time limit: 1 second Memory ...

  4. 2019 GDUT Rating Contest I : Problem A. The Bucket List

    题面: A. The Bucket List Input file: standard input Output file: standard output Time limit: 1 second Me ...

  5. 2019 GDUT Rating Contest I : Problem G. Back and Forth

    题面: G. Back and Forth Input file: standard input Output file: standard output Time limit: 1 second Mem ...

  6. 2019 GDUT Rating Contest III : Problem E. Family Tree

    题面: E. Family Tree Input file: standard input Output file: standard output Time limit: 1 second Memory ...

  7. 2019 GDUT Rating Contest III : Problem C. Team Tic Tac Toe

    题面: C. Team Tic Tac Toe Input file: standard input Output file: standard output Time limit: 1 second M ...

  8. 2019 GDUT Rating Contest III : Problem A. Out of Sorts

    题面: 传送门 A. Out of Sorts Input file: standard input Output file: standard output Time limit: 1 second M ...

  9. 2019 GDUT Rating Contest II : Problem G. Snow Boots

    题面: G. Snow Boots Input file: standard input Output file: standard output Time limit: 1 second Memory ...

随机推荐

  1. spring-cloud-netflix-eureka-client

    服务注册中心eureka-server已经搭好,我们开始编写一个eureka-client,并提供一个hello服务 一.新建module,选择对应的springcloud模块,pom.xml如下: ...

  2. range()函数的使用、while循环、for-in循环等

    一.range()函数 用于直接生成一个整数序列 创建range对象的三种方式: (1)range(stop)    创建一个(0,stop)之间的整数序列,步长为1 (2)range(start,s ...

  3. es6 curry function

    es6 curry function // vuex getters export const getAdsFilterConfig = (state) => (spreader) => ...

  4. free video tutorial of Deep Learning

    free video tutorial of Deep Learning AI 深度学习/ 机器学习/人工智能 Deep Learning With Deep Learning – a form of ...

  5. Google Advanced Search Skills

    Google Advanced Search Skills site:

  6. css & auto height & overflow: hidden;

    css & auto height & overflow: hidden; {overflow: hidden; height: 100%;} is the panacea! {溢出: ...

  7. js 获取包含emoji的字符串的长度

    let emoji_exp = /(\u00a9|\u00ae|[\u2000-\u3300]|\ud83c[\ud000-\udfff]|\ud83d[\ud000-\udfff]|\ud83e[\ ...

  8. Baccarat流动性挖矿的收益能否持续?该如何参与Baccarat流动性挖矿?

    2020年DeFi市场火热,众多投资机构纷纷入场,分享这场资本盛宴.然而,目前市面上大多数DeFi项目手续费高昂,小资金的投资者无法入市.为了让更多的用户参与其中,NGK推出了Baccarat流动性挖 ...

  9. 源码分析:Exchanger之数据交换器

    简介 Exchanger是Java5 开始引入的一个类,它允许两个线程之间交换持有的数据.当Exchanger在一个线程中调用exchange方法之后,会阻塞等待另一个线程调用同样的exchange方 ...

  10. JVM线上故障初步简易排查

    线上故障主要包括cpu 磁盘 内存 网络等问题 依次排查 1.cpu 1) 先用ps找到进程pid 2) top -H -p pid 找到cpu占用高的线程 3)printf '%x\n' pid 获 ...