写在前面

简单的单调队列优化 DP

处理略微有点恶心,于是乎,用来取 \(\max\) 的极小值直接开到了 long long 的最小极限,了 define int long long /cy

算法思路

必须按编号顺序加材料,明显的阶段性,且数据范围明显地提示我们可以 DP

状态也很好想,设 \(f_{i, j}\) 表示放完前 \(i\) 个物品后锅内有 \(j\) 个物品时的最大答案。

那么使用填表法转移:

\[f_{i, j} = \max_{j - 1 \le k \le j + s - 1}\{f_{i - 1,k}\} + j \times a_i
\]

那么发现 \(k\) 的取值范围随着 \(j\) 的变化刚好是个滑动窗口,其余的项都是输入时或枚举过程中的定值,因此使用单调队列优化取最大值的操作。

另外表示阶段的 \(i\) 只会取到上一个阶段的答案,因此开滚动数组压掉第一维。

Tips

建议把可能需要开 long long 的都打开,如果不觉得很傻或者比较懒的话也可以直接 define int long long

内层循环可以倒序枚举,这样就只需要一开始的时候往单调队列里压一个元素。不用乱七八糟的处理。

初始化极小值的时候要足够小亲测 \(-10^{12}\) 都不够用,还不能在加上一些负值之后爆 long long 的最小范围。

Code

/*

By chen_green

2020/11/5

设 f[i][j]表示放完前 i 件物品后锅中已经放了 j 件物品的最大耐久度

f[i][j] = max{f[i - 1][k]} + j * a[i] (j - 1 <= k <= j - 1 + s)

滚动数组 + 单调队列优化

*/

#include <bits/stdc++.h>
#define int long long #define LL long long using namespace std; inline int read0() {
int fh = 1, w = 0; char ch = getchar();
for (; !isdigit(ch); ch = getchar()) if (ch == '-') fh = -1;
for (; isdigit(ch); ch = getchar()) w = (w << 3) + (w << 1) + (ch ^ '0');
return fh * w;
} inline LL read() {
LL fh = 1, w = 0; char ch = getchar();
for (; !isdigit(ch); ch = getchar()) if (ch == '-') fh = -1;
for (; isdigit(ch); ch = getchar()) w = (w << 3) + (w << 1) + (ch ^ '0');
return fh * w;
} const int Maxn = 5505; LL f[2][Maxn]; LL a[Maxn]; int n, w, s; deque<LL> dq; void initdq() {while(!dq.empty()) dq.pop_back();}
void push(int x) {
if((int)dq.size() >= (int)(s + 1)) dq.pop_front();
while((!dq.empty()) && (dq.back() <= x)) dq.pop_back();
dq.push_back(x);
}
LL Getmax() {
return dq.front();
} signed main() {
n = read0(); w = read0(); s = read0();
for(register int i = 1; i <= n; ++i) {
a[i] = read();
}
for(register int i = 0; i <= w; ++i) f[0][i] = f[1][i] = -9223372036854775808 / 2;
LL f0 = f[0][0];
f[0][0] = 0;
LL ans = -9223372036854775808;
for(register int i = 1; i <= n; ++i) {
if(i == 2) f[0][0] = f0;
initdq();
push(f[i - 1 & 1][w]);
for(register int j = w; j >= 1; --j) {
push(f[i - 1 & 1][j - 1]);
f[i & 1][j] = Getmax() + j * a[i];
//cout << f[i & 1][j] << " ";
}
}
for(int i = 1; i <= w; ++i) {
ans = max(ans, f[n & 1][i]);
}
printf("%lld", ans);
}

P5858 Golden Swold的更多相关文章

  1. P5858 「SWTR-03」Golden Sword

    题面: Link 题面有点长,不想粘了,QAQ. 题解: 一句话题意,你有 \(n\) 件物品需要依次放进去,每个物品放进去之后会得到一定的权值,为当前锅炉里面的物品的数量乘以 \(a_i\) 每次在 ...

  2. Why The Golden Age Of Machine Learning is Just Beginning

    Why The Golden Age Of Machine Learning is Just Beginning Even though the buzz around neural networks ...

  3. C Golden gun的巧克力

    Time Limit:1000MS  Memory Limit:65535K 题型: 编程题   语言: 无限制 描述 众所周知,13级有尊大神Golden gun,人称根叔,简称金枪!众立志进校队的 ...

  4. 10 Golden Rules of Project Risk Management

    The benefits of risk management in projects are huge. You can gain a lot of money if you deal with u ...

  5. The golden ratio: 1.618

    http://www.chinaz.com/design/2015/1109/467968_2.shtml The golden ratio: 1.618 a/b=b/(a+b) The Fibona ...

  6. 【UVA 11383】 Golden Tiger Claw (KM算法副产物)

    Omi, Raymondo, Clay and Kimiko are on new adventure- in search of new Shen Gong Wu. But EvilBoy Geni ...

  7. Golden Pyramid

    Golden Pyramid Our Robo-Trio need to train for future journeys and treasure hunts. Stephan has built ...

  8. Oracle Golden Gate - 概念和机制 (ogg)

    Golden Gate(简称OGG)提供异构环境下交易数据的实时捕捉.变换.投递. OGG支持的异构环境有: OGG的特性: 对生产系统影响小:实时读取交易日志,以低资源占用实现大交易量数据实时复制 ...

  9. 转://Oracle Golden Gate 概念和原理

    引言:Oracle Golden Gate是Oracle旗下一款支持异构平台之间高级复制技术,是Oracle力推一种HA高可用产品,简称“OGG”,可以实现Active-Active 双业务中心架构 ...

随机推荐

  1. SQL语句中case,when,then的用法

    用法如下bai: 复制代码 SELECT s.s_id, s.s_name, s.s_sex, CASE WHENs.s_sex='1'THEN'男' WHENs.s_sex='2'THEN'女' E ...

  2. 浅谈IAT加密原理及过程

    上一次做完代码段加密后,又接触到了新的加密方式:IAT加密 IAT加密是通过隐藏程序的导入表信息,以达到增加分析程序的难度.因为没有导入表,就无法单纯的从静态状态下分析调用了什么函数,动态调试时,也无 ...

  3. MySQL求两表的差集(非交集)

    mysql如何查询两个字段数不同的表中数据不一致的记录 一般可用NOT EXISTS(非存在子句)或 LEFT JOIN左(右)连接后所产生空字段值来筛选两表的差集 1.NOT EXISTS not ...

  4. Lightweight Render Pipeline

    (翻译) Lightweight Render Pipeline (LWRP),轻量级渲染管线,是一个Unity预制的Scriptable Render Pipeline (SRP).LWRP可以为移 ...

  5. C# 9 新特性 —— 增强的模式匹配

    C# 9 新特性 -- 增强的模式匹配 Intro C# 9 中进一步增强了模式匹配的用法,使得模式匹配更为强大,我们一起来了解一下吧 Sample C# 9 中增强了模式匹配的用法,增加了 and/ ...

  6. 第十六章节 BJROBOT 开机自启动服务【ROS全开源阿克曼转向智能网联无人驾驶车】

    1.把小车平放在地板上,用资料里的虚拟机,打开一个终端 ssh 过去主控端运行rosrun robot_upstart install znjrobot/launch/bringup.launch 2 ...

  7. 【C++】《C++ Primer 》第十八章

    第十八章 用于大型程序的工具 大规模应用程序的特殊要求包括: 在独立开发的子系统之间协同处理错误的能力. 使用各种库进行协同开发的能力. 对比较复杂的应用概念建模的能力. 一.异常处理 异常处理(ex ...

  8. Flutter 基础组件:图片和Icon

    前言 Flutter中,可以通过Image组件来加载并显示图片,Image的数据源可以是asset.文件.内存以及网络. ImageProvider 是一个抽象类,主要定义了图片数据获取的接口load ...

  9. Flutter 基础组件:按钮

    前言 Material组件库中提供了多种按钮组件如RaisedButton.FlatButton.OutlineButton等,它们都是直接或间接对RawMaterialButton组件的包装定制,所 ...

  10. ReentrantLock-源码解析

    ReentrantLock类注释 1.可重入互斥锁,意思是表示该锁能够支持一个线程对资源的重复加锁,该锁还支持获取锁的公平和非公平性选择.synchronized关键字隐式的支持重进入. 2.可以通过 ...