Martyr2项目实现——Number部分的问题求解 (1) Find Pi to Nth Digit

Find Pi to Nth Digit

问题描述:

Find PI to the Nth Digit – Enter a number and have the program generate PI up to that many decimal places. Keep a limit to how far the program will go.

翻译:

给定一个整数N,让程序生成精确到小数点后N为的圆周率\(\pi\)

要保证程序运行的时间在一定限度下

计算原理:

常用的圆周率的数值计算方法有级数法,迭代法,随机算法

级数法:使用圆周率\(\pi\)的级数表示来计算

  1. 高斯提出的用于平方倒数和公式

    \[\frac{\pi^2}{6}=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}...+\frac{1}{(n-1)^2}+\frac{1}{n^2}+...
    \]
  2. 莱布尼兹公式

    \[\frac{\pi}{4}=\frac{1}{1}-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+...+(-1)^{n-1}\frac{1}{2n-1}+...
    \]

    不过莱布尼兹公式的收敛速度很慢

  3. 拉马努金提出的公式

    \[\frac{1}{\pi}=\frac{2\sqrt{2}}{9801}\sum_{k=0}^{+\infty}\frac{(4k)!(1103+26390k)}{k!^4(396^{4k})}
    \]

使用级数法计算圆周率的收敛速度还是太慢

迭代算法:适合计算机程序实现的计算圆周率的方法

​ 迭代算法的收敛速度要比无穷级数快很多

​ 比较出名的算法是高斯-勒让德算法

高斯-勒让德算法:

​ 引入四个数列 \(\{a_n\},\{b_n\},\{t_n\},\{p_n\}\)

​ 他们的初值为:

\[a_0=1\qquad b_0=\frac{1}{\sqrt{2}}\qquad t_0=\frac{1}{4}\qquad p_0=1
\]

​ 递推公式为:

\[a_{n+1}=\frac{a_n+b_n}{2}\;,b_{n+1}=\sqrt{a_nb_n}\;,t_{n+1}=t_n-p_n(a_n-a_{n+1})^2\;,p_{n+1}=2p_n.
\]

​ 计算圆周率\(\pi\)近似值的方法:

\[\pi \approx\frac{(a_{n+1}+b_{n+1})^2}{4t_{n+1}}
\]

该算法每执行一次迭代,计算出的圆周率的正确位数就会增加一倍多。

具体的实现:

我们准备将圆周率计算到小数点后1000位(N<=1000)

开方运算

考虑到java的浮点数最高只支持64位double双精度浮点数,为了能够计算的更精确,考虑使用java的大数类·java.Math.BigDecimal来进行计算。

注意到在使用高斯勒让德算法计算圆周率时,需要用到开平方运算,BigDecimal并没有实现对大数对象的开方运算,我们需要自己实现。这里使用牛顿迭代法来计算大数的开平方。

具体的计算方法参考博客:java BigDecimal开平方

大数除法的精度问题

在进行大数运算时,对于大数除法BigDeciaml.divide(),需要设定响应的计算精度和舍入方法(如何截断数值)

这里我们需要使用到java.Math.MathContext类,这个类描述了数字运算符的某些规则

我们可以使用默认的规则(比如MathContext.DECIMAL128)

也可以指定精度和舍入模式,定义自己的MathContext对象,构造方法为

MathContext(int setPrecision, RoundingMode setRoundingMode)

具体用法参考博客:java_math_MathContext

为了能够实现我们的计算要求(1000位的圆周率),我们设定大数除法的计算精度为1002位(有效数字,自定义舍入方法)

MathContext mc = new MathContext(1002, RoundingMode.HALF_EVEN);

对于开平方运算,我们设置它的计算精度为500位(精确到小数点后100位)

下表是我们计算的每次迭代可以到达的计算精度

对于给定的参数N(要求计算小数位数),我们通过查表来确定迭代次数,然后对得到的数值进行截断。

迭代次数 精度(小数点后精确到的位数)
0 0
1 2
2 7
3 18
4 40
5 83
6 170
7 344
8 693
9 1000

程序实现:

主程序
import java.math.BigDecimal;
import java.math.MathContext; public class CalculatePi {
private static int[] map_array = {0,2,7,18,40,83,170,344,693,1000}; public static String getPiValue(int N){ //获取精确到小数点后N位的圆周率近似值
if(N<0||N>1000) return "error:给定参数超出范围!(默认参数范围为[1,1000])";
int index = 0;
for(int i=map_array.length-1;i>=1;i--){
if(N>map_array[i]) {
index = i+1;
break; //给定的参数N位于map_array[i,i+1]之间
}
}
String value = calculate(N,index);
return value;
} private static String calculate(int N,int index) {
//利用高斯-勒让德迭代算法来计算圆周率的近似值,index为迭代的次数
if (index == 0) return "3";
//设置初值
BigDecimal a0 = new BigDecimal(1);
BigDecimal a1 = new BigDecimal(1);
BigDecimal b = CalculateSqrt.sqrt(new BigDecimal("0.5"));
BigDecimal t = new BigDecimal("0.25");
BigDecimal p = new BigDecimal(1);
BigDecimal pi = new BigDecimal(3);
MathContext mc = CalculateSqrt.mc;
//进行迭代
for (int i = 0; i < index; i++) {
a1 = a0.add(b);
a1 = a1.divide(new BigDecimal(2), mc);
b = b.multiply(a0);
b = CalculateSqrt.sqrt(b);
BigDecimal temp = new BigDecimal(1);
temp = a0.subtract(a1);
temp = temp.multiply(temp);
temp = temp.multiply(p);
t = t.subtract(temp);
p = p.multiply(new BigDecimal(2));
temp = a1.add(b);
temp = temp.multiply(temp);
temp = temp.divide(new BigDecimal(4), mc);
pi = temp.divide(t, mc);
a0 = a1;
}
return pi.toString().substring(0, N + 2);
} public static void main(String[] args) {
int N = 10;
String pi = getPiValue(1001);
System.out.println(pi);
}
}
计算平方根程序:
import java.math.BigDecimal;
import java.math.MathContext;
import java.math.RoundingMode; public class CalculateSqrt {
private static int N = 1002;
public static MathContext mc = new MathContext(N, RoundingMode.HALF_EVEN);
private static String eps = "0."+repeatString("0",N/2)+"1";
public static void main(String[] args) {
BigDecimal n = new BigDecimal("2");
BigDecimal r = sqrt(n);
System.out.println(r.toString());
} public static BigDecimal sqrt(BigDecimal num) {
if(num.compareTo(BigDecimal.ZERO) < 0) {
return BigDecimal.ZERO;
}
BigDecimal x = num.divide(new BigDecimal("2"), mc);
while(x.subtract(x = sqrtIteration(x, num)).abs().compareTo(new BigDecimal(eps)) > 0);
return x;
} private static BigDecimal sqrtIteration(BigDecimal x, BigDecimal n) {
return x.add(n.divide(x, mc)).divide(new BigDecimal("2"), mc);
}
private static String repeatString(String str,int n){
StringBuffer sb = new StringBuffer();
for(int i=0;i<n;i++){
sb.append(str);
}
return sb.substring(0,sb.length());
}
}

Martyr2项目实现——Number部分的问题求解 (1) Find Pi to Nth Digit的更多相关文章

  1. Martyr2项目实现——Number部分问题求解(3) Prime Factorization

    Martyr2项目实现--Number部分问题求解(3) Prime Factorization 质因子分解 问题描述: Prime Factorization – Have the user ent ...

  2. Android项目笔记整理(1)

    第二部分 工作项目中以及平时看视频.看书或者看博客时整理的个人觉得挺有用的笔记 1.Activity界面切换:   if(条件1){        setContentView(R.layout.ma ...

  3. ural 1748 The Most Complex Number 和 丑数

    题目:http://acm.timus.ru/problem.aspx?space=1&num=1748 题意:求n范围内约数个数最多的那个数. Roughly speaking, for a ...

  4. [LeetCode][Python]17: Letter Combinations of a Phone Number

    # -*- coding: utf8 -*-'''__author__ = 'dabay.wang@gmail.com' 17: Letter Combinations of a Phone Numb ...

  5. ORACLE 中NUMBER类型默认的精度和Scale问题

    在ORACLE数据库中,NUMBER(P,S)是最常见的数字类型,可以存放数据范围为10^-130~10^126(不包含此值),需要1~22字节(BYTE)不等的存储空间.P 是Precison的英文 ...

  6. PAT1082:Read Number in Chinese

    1082. Read Number in Chinese (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yu ...

  7. js中的Number方法

    1.Number.toExponential(fractionDigits) 把number转换成一个指数形式的字符串.可选参数控制其小数点后的数字位数.它必须在0~20之间. 例如: documen ...

  8. 单词number 和 numeral 的区别

    原文: http://blog.sina.com.cn/s/blog_72cd06360100vn7t.html be of 的用法,相当于表征特征或属性的形容词. 简单地说,“of + 名词”等于“ ...

  9. [Algorithm] 4. Ugly Number II

    Description Ugly number is a number that only havefactors 2, 3 and 5. Design an algorithm to find th ...

随机推荐

  1. Vue 事件的高级使用方法

    Vue 事件的高级使用方法 事件方法 在Vue中提供了4中事件监听方法,分别是: $on(event: string | Array, fn) $emit(event: string) $once(e ...

  2. 在express中使用ES7装饰器构建路由

    在Java的Spring框架中,我们经常会看到类似于@Controller这样的注解,这类代码能够极大的提高我们代码的可读性和复用性.而在Javascript的ES7提案中,有一种新的语法叫做deco ...

  3. softmax交叉熵损失函数求导

    来源:https://www.jianshu.com/p/c02a1fbffad6 简单易懂的softmax交叉熵损失函数求导 来写一个softmax求导的推导过程,不仅可以给自己理清思路,还可以造福 ...

  4. Spring Batch远程分区的本地Jar包模式

    1 前言 欢迎访问南瓜慢说 www.pkslow.com获取更多精彩文章! Spring相关文章:Springboot-Cloud Spring Batch远程分区对于大量数据的处理非常擅长,它的实现 ...

  5. 云计算openstack——虚拟机获取不到ip(13)

    一.现象描述: openstack平台中创建虚拟机后,虚拟机在web页面中显示获取到了ip,但是打开虚拟机控制台后查看网络状态,虚拟机没有ip地址,下图为故障截图: 二.分析思路: (1)查看neut ...

  6. Axios源码深度剖析

    Axios源码深度剖析 - XHR篇 axios 是一个基于 Promise 的http请求库,可以用在浏览器和node.js中,目前在github上有 42K 的star数 分析axios - 目录 ...

  7. vue单页面条件下添加类似浏览器的标签页切换功能

    在用vue开发的时候,单页面应用程序,而又有标签页这种需求,各种方式实现不了, 从这个 到这个,然后再返回上面那个 因为每个标签页的route不一样,导致组件重新渲染的问题,怎么都不知道如何实现... ...

  8. springboot:This application has no explicit mapping for /erro

    springboot启动没有报错,但是访问的时候返回如上图的错误.看报错内容感觉是没有这个mapping对应的接口.但是确实写了. 最终发现是因为springboot的启动类放的位置不对.启动类所在的 ...

  9. xshell评估过期(已解决)

    登录英文版官网 https://www.netsarang.com/ 点击download  选择xshell 5 . 直接在页面中有红色*号的地方输入个人信息,licensetype 必须选 Hom ...

  10. LINQ中的OrderBy实现按照两个字段升序、降序排序操作

    在公司或许有这种需求,先根据第一个某个字段按照升序排序,然后如果相同,在按照第二个某个字降序排序,我们该怎么去实现呢? 现在来教教大家分别使用Labmda和LINQ进行这种操作. 1.先按照第一个字段 ...