题目

一棵二叉树可以按照如下规则表示成一个由0、1、2组成的字符序列,我们称之为"二叉树序列S":

\[S=\left\{
\begin{aligned}
0 &\ \ 表示该树没有子节点 \\
1S_1 &\ \ 表示该树有一个子节点,S_1为其子树的二叉树序列 \\
2S_1S_2 &\ \ 表示该树有两个子节点,S_1和S_2分别表示其两个子树的二叉树序列
\end{aligned}
\right.
\]

例如,下图所表示的二叉树可以用二叉树序列S=21200110来表示:

你的任务是要对一棵二叉树的节点进行染色。每个节点可以被染成红色、绿色或蓝色。并且,一个节点与其子节点的颜色必须不同,如果该节点有两个子节点,那么这两个子节点的颜色也必须不相同。给定一棵二叉树的二叉树序列,请求出这棵树中最多和最少有多少个点能够被染成绿色

输入格式

输入文件仅有一行,不超过\(5\times 10^5\)个字符,表示一个二叉树序列

输出格式

输出文件也只有一行,包含两个数,依次表示最多和最少有多少个点能够被染成绿色

输入样例

1122002010

输出样例

5 2

题解

直接用输入DFS来树形DP.

定义maxvminv两个数组,maxv[i][j]表示以\(i\)号节点为根节点的子树最多能染成绿色的节点数量,当\(j=0\),根节点被染成绿色;当\(j=1\),根节点被染成红色;当\(j=2\),根节点被染成蓝色.

minv类似,代表最少能染成绿色的节点数量.

当根节点有一个子节点时,这个子节点不能和根节点一个颜色,所以从剩下的两种颜色中挑选最大的更新.注意当根节点为绿色时,dp值需要加1(多了根节点一个绿色节点)

当根节点有两个子节点时,这两个子节点不能和根节点一个颜色,而又只剩下两种颜色,所以有两种情况,从这两种情况中选最大的更新即可.同样注意当根节点为绿色时的情况.

那么,怎么DFS这一个特殊序列?

首先可以确定的是,根节点就是第一项,那么通过第一项可以得知根节点有几个子树,如果这棵树不为空,那么左子树的根节点一定是第二项,注意如果只有一棵子树,那么我把唯一的一棵子树看作左子树.

再对左子树进行相同的递归操作,遇到0回溯,因为保证叶节点一定为0,所以不需要检查边界,回溯的时候,可以返回这棵子树在序列中最后一项的位置,这个位置加一就是右子树(如果有两棵子树).

以此类推,就能在不建树的情况下DFS它

代码

#include <iostream>
#include <string>
using namespace std;
const int maxn = 10005;
string s;
int maxv[maxn][3], minv[maxn][3];
int dfs(int root) {
if (s[root] == '0') {
maxv[root][0] = minv[root][0] = 1; // 因为叶节点没有子树,所以若该叶节点不为绿色,这棵子树中绿色节点的个数为0,反之为1
return root; // 这棵子树的结尾坐标
}
int lend = dfs(root + 1); // 递归左子树
if (s[root] == '1') {
maxv[root][0] = max(maxv[root+1][1],maxv[root+1][2])+1; // 这个是绿色的,需要额外算上根节点
maxv[root][1] = max(maxv[root+1][0],maxv[root+1][2]); // 这两种代表什么颜色其实无关紧要
maxv[root][2] = max(maxv[root+1][0],maxv[root+1][1]);
minv[root][0] = min(minv[root+1][1],minv[root+1][2])+1;
minv[root][1] = min(minv[root+1][0],minv[root+1][2]);
minv[root][2] = min(minv[root+1][0],minv[root+1][1]);
return lend; // 如果有一棵子树,左子树的结尾就是这棵子树的结尾
} else {
int rend = dfs(lend + 1); // 根据左子树的结尾递归右子树
maxv[root][0] = max(maxv[root+1][1]+maxv[lend+1][2],maxv[root+1][2]+maxv[lend+1][1])+1;
maxv[root][1] = max(maxv[root+1][0]+maxv[lend+1][2],maxv[root+1][2]+maxv[lend+1][0]);
maxv[root][2] = max(maxv[root+1][0]+maxv[lend+1][1],maxv[root+1][1]+maxv[lend+1][0]);
minv[root][0] = min(minv[root+1][1]+minv[lend+1][2],minv[root+1][2]+minv[lend+1][1])+1;
minv[root][1] = min(minv[root+1][0]+minv[lend+1][2],minv[root+1][2]+minv[lend+1][0]);
minv[root][2] = min(minv[root+1][0]+minv[lend+1][1],minv[root+1][1]+minv[lend+1][0]);
return rend; // 如果有两棵子树,右子树的结尾才是这棵子树的结尾
}
}
int main() {
cin >> s;
dfs(0);
// 三种情况选最大/最小
cout<<max(maxv[0][0], max(maxv[0][1], maxv[0][2]))<<" "<<min(minv[0][0], min(minv[0][1], minv[0][2]))<<endl;
return 0;
}

P.S.

最近记忆力有点下降,这道题在两个网站上的数据范围不同,我照着第一个写,交到第二个上面,疯狂RE,死盯了半个小时也没找到原因...

P2585 三色二叉树 题解的更多相关文章

  1. luogu P2585 [ZJOI2006]三色二叉树

    P2585 [ZJOI2006]三色二叉树 题目描述 输入输出格式 输入格式: 输入文件名:TRO.IN 输入文件仅有一行,不超过10000个字符,表示一个二叉树序列. 输出格式: 输出文件名:TRO ...

  2. 【树形DP】洛谷P2585 [ZJOI2006] 三色二叉树

    [树形DP]三色二叉树 标签(空格分隔): 树形DP [题目] 一棵二叉树可以按照如下规则表示成一个由0.1.2组成的字符序列,我们称之为"二叉树序列S": 0 该树没有子节点 1 ...

  3. 【BZOJ1864】[Zjoi2006]三色二叉树 树形DP

    1864: [Zjoi2006]三色二叉树 Description Input 仅有一行,不超过500000个字符,表示一个二叉树序列. Output 输出文件也只有一行,包含两个数,依次表示最多和最 ...

  4. 【BZOJ1864】三色二叉树(动态规划)

    [BZOJ1864]三色二叉树(动态规划) 题面 BZOJ 题解 首先把树给构出来. 设\(f[i][0/1]\)表示当前节点\(i\),是否是绿色节点的子树中最大/最小的绿色节点的个数和. 转移很显 ...

  5. 嘴巴题5 「BZOJ1864」[ZJOI2006] 三色二叉树

    1864: [Zjoi2006]三色二叉树 Time Limit: 1 Sec Memory Limit: 64 MB Submit: 1195 Solved: 882 [Submit][Status ...

  6. BZOJ1864[ZJOI2006]三色二叉树[树形DP]

    1864: [Zjoi2006]三色二叉树 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 773  Solved: 548[Submit][Status] ...

  7. 【BZOJ-1864】三色二叉树 树形DP

    1864: [Zjoi2006]三色二叉树 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 659  Solved: 469[Submit][Status] ...

  8. BZOJ 1864: [Zjoi2006]三色二叉树( 树形dp )

    难得的ZJOI水题...DFS一遍就行了... ----------------------------------------------------------------------- #inc ...

  9. BZOJ_1864_[Zjoi2006]三色二叉树_树形DP

    BZOJ_1864_[Zjoi2006]三色二叉树_树形DP 题意: 分析:递归建树,然后DP,从子节点转移. 注意到红色和蓝色没有区别,因为我们可以将红蓝互换而方案是相同的.这样的话我们只需要知道当 ...

随机推荐

  1. 搞清楚C语言指针

    Part 0:为什么要写这篇文章 C语言中的指针是C语言的精髓,也是C语言的重难点之一. 然而,很少有教程能把指针讲的初学者能听懂,还不会引起歧义. 本文章会尝试做到这一点,如有错误,请指出. Par ...

  2. Grafana6.4.4 + zabbix 4.2

    环境简介 OS:Centos 7.4 zabbix:4.2.6 Grafana:6.4.4 一.yum 直接安装的方式 官方推荐有几种安装方式我采用yum 直接安装的方式 官方doc: https:/ ...

  3. MongoDB 逻辑备份工具mongodump

    mongodump是官方提供的一个对数据库进行逻辑导出的备份工具,导出文件为BSON二进制格式,无法使用文本编辑工具直接查看.mongodump可以导出mongod或者mongos实例的数据,从集群模 ...

  4. laravel向视图传递变量

    向视图中传递变量 我们在开发web应用当中,通常都不是为了写静态页面而生的,我们需要跟数据打交道,那么这个时候,问题就来了,在一个MVC的框架中,怎么将数据传给视图呢?比如我们要在 ArticleCo ...

  5. post请求头的常见类型

    1.application/json(JSON数据格式) xhr.setRequestHeader("Content-type","application/json; c ...

  6. vc++如何知道cppdlg所关联的对话框?

    vc++ 6.0如何知道cppdlg所关联的对话框? 找a.cpp对应的a.h头文件里面找. https://blog.csdn.net/txwtech/article/details/1020824 ...

  7. Java工程中各种带有O的对象分类笔记

    在Java工程里面,我们总会碰到各种不同的带有O的对象, 对于一个小白来说,经常会混淆这些对象的使用场景,所以在这里mark一下,让自己的代码更加规范,但这个也是Java被诟病的地方,不同的业务需要给 ...

  8. Linux下安装MongoDB 4.2数据库--使用tar包方式

    (一)基础环境设置 操作系统版本  :centos-7.4 MongoDB版本:MongoDB 4.2 社区版 (1)关闭防火墙 # 关闭防火墙 [root@mongodbenterprise lib ...

  9. 一条update SQL语句是如何执行的

    一条更新语句的执行过程和查询语句类似,更新的流程涉及两个日志:redo log(重做日志)和binlog(归档日志).比如我们要将ID(主键)=2这一行的值加(c:字段)1,SQL语句如下: upda ...

  10. 解决UEditor编辑时,只添加视频内容,不添加文字,视频信息不能保存到数据库的问题

    造成这个问题的原因是富文本保存内容时会筛除空标签,然后统计是否有内容,通过字数统计也可以看到,上传完视频后字数还是零,因为视频上传后是<video></video>标签,这个标 ...