题目

一棵二叉树可以按照如下规则表示成一个由0、1、2组成的字符序列,我们称之为"二叉树序列S":

\[S=\left\{
\begin{aligned}
0 &\ \ 表示该树没有子节点 \\
1S_1 &\ \ 表示该树有一个子节点,S_1为其子树的二叉树序列 \\
2S_1S_2 &\ \ 表示该树有两个子节点,S_1和S_2分别表示其两个子树的二叉树序列
\end{aligned}
\right.
\]

例如,下图所表示的二叉树可以用二叉树序列S=21200110来表示:

你的任务是要对一棵二叉树的节点进行染色。每个节点可以被染成红色、绿色或蓝色。并且,一个节点与其子节点的颜色必须不同,如果该节点有两个子节点,那么这两个子节点的颜色也必须不相同。给定一棵二叉树的二叉树序列,请求出这棵树中最多和最少有多少个点能够被染成绿色

输入格式

输入文件仅有一行,不超过\(5\times 10^5\)个字符,表示一个二叉树序列

输出格式

输出文件也只有一行,包含两个数,依次表示最多和最少有多少个点能够被染成绿色

输入样例

1122002010

输出样例

5 2

题解

直接用输入DFS来树形DP.

定义maxvminv两个数组,maxv[i][j]表示以\(i\)号节点为根节点的子树最多能染成绿色的节点数量,当\(j=0\),根节点被染成绿色;当\(j=1\),根节点被染成红色;当\(j=2\),根节点被染成蓝色.

minv类似,代表最少能染成绿色的节点数量.

当根节点有一个子节点时,这个子节点不能和根节点一个颜色,所以从剩下的两种颜色中挑选最大的更新.注意当根节点为绿色时,dp值需要加1(多了根节点一个绿色节点)

当根节点有两个子节点时,这两个子节点不能和根节点一个颜色,而又只剩下两种颜色,所以有两种情况,从这两种情况中选最大的更新即可.同样注意当根节点为绿色时的情况.

那么,怎么DFS这一个特殊序列?

首先可以确定的是,根节点就是第一项,那么通过第一项可以得知根节点有几个子树,如果这棵树不为空,那么左子树的根节点一定是第二项,注意如果只有一棵子树,那么我把唯一的一棵子树看作左子树.

再对左子树进行相同的递归操作,遇到0回溯,因为保证叶节点一定为0,所以不需要检查边界,回溯的时候,可以返回这棵子树在序列中最后一项的位置,这个位置加一就是右子树(如果有两棵子树).

以此类推,就能在不建树的情况下DFS它

代码

#include <iostream>
#include <string>
using namespace std;
const int maxn = 10005;
string s;
int maxv[maxn][3], minv[maxn][3];
int dfs(int root) {
if (s[root] == '0') {
maxv[root][0] = minv[root][0] = 1; // 因为叶节点没有子树,所以若该叶节点不为绿色,这棵子树中绿色节点的个数为0,反之为1
return root; // 这棵子树的结尾坐标
}
int lend = dfs(root + 1); // 递归左子树
if (s[root] == '1') {
maxv[root][0] = max(maxv[root+1][1],maxv[root+1][2])+1; // 这个是绿色的,需要额外算上根节点
maxv[root][1] = max(maxv[root+1][0],maxv[root+1][2]); // 这两种代表什么颜色其实无关紧要
maxv[root][2] = max(maxv[root+1][0],maxv[root+1][1]);
minv[root][0] = min(minv[root+1][1],minv[root+1][2])+1;
minv[root][1] = min(minv[root+1][0],minv[root+1][2]);
minv[root][2] = min(minv[root+1][0],minv[root+1][1]);
return lend; // 如果有一棵子树,左子树的结尾就是这棵子树的结尾
} else {
int rend = dfs(lend + 1); // 根据左子树的结尾递归右子树
maxv[root][0] = max(maxv[root+1][1]+maxv[lend+1][2],maxv[root+1][2]+maxv[lend+1][1])+1;
maxv[root][1] = max(maxv[root+1][0]+maxv[lend+1][2],maxv[root+1][2]+maxv[lend+1][0]);
maxv[root][2] = max(maxv[root+1][0]+maxv[lend+1][1],maxv[root+1][1]+maxv[lend+1][0]);
minv[root][0] = min(minv[root+1][1]+minv[lend+1][2],minv[root+1][2]+minv[lend+1][1])+1;
minv[root][1] = min(minv[root+1][0]+minv[lend+1][2],minv[root+1][2]+minv[lend+1][0]);
minv[root][2] = min(minv[root+1][0]+minv[lend+1][1],minv[root+1][1]+minv[lend+1][0]);
return rend; // 如果有两棵子树,右子树的结尾才是这棵子树的结尾
}
}
int main() {
cin >> s;
dfs(0);
// 三种情况选最大/最小
cout<<max(maxv[0][0], max(maxv[0][1], maxv[0][2]))<<" "<<min(minv[0][0], min(minv[0][1], minv[0][2]))<<endl;
return 0;
}

P.S.

最近记忆力有点下降,这道题在两个网站上的数据范围不同,我照着第一个写,交到第二个上面,疯狂RE,死盯了半个小时也没找到原因...

P2585 三色二叉树 题解的更多相关文章

  1. luogu P2585 [ZJOI2006]三色二叉树

    P2585 [ZJOI2006]三色二叉树 题目描述 输入输出格式 输入格式: 输入文件名:TRO.IN 输入文件仅有一行,不超过10000个字符,表示一个二叉树序列. 输出格式: 输出文件名:TRO ...

  2. 【树形DP】洛谷P2585 [ZJOI2006] 三色二叉树

    [树形DP]三色二叉树 标签(空格分隔): 树形DP [题目] 一棵二叉树可以按照如下规则表示成一个由0.1.2组成的字符序列,我们称之为"二叉树序列S": 0 该树没有子节点 1 ...

  3. 【BZOJ1864】[Zjoi2006]三色二叉树 树形DP

    1864: [Zjoi2006]三色二叉树 Description Input 仅有一行,不超过500000个字符,表示一个二叉树序列. Output 输出文件也只有一行,包含两个数,依次表示最多和最 ...

  4. 【BZOJ1864】三色二叉树(动态规划)

    [BZOJ1864]三色二叉树(动态规划) 题面 BZOJ 题解 首先把树给构出来. 设\(f[i][0/1]\)表示当前节点\(i\),是否是绿色节点的子树中最大/最小的绿色节点的个数和. 转移很显 ...

  5. 嘴巴题5 「BZOJ1864」[ZJOI2006] 三色二叉树

    1864: [Zjoi2006]三色二叉树 Time Limit: 1 Sec Memory Limit: 64 MB Submit: 1195 Solved: 882 [Submit][Status ...

  6. BZOJ1864[ZJOI2006]三色二叉树[树形DP]

    1864: [Zjoi2006]三色二叉树 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 773  Solved: 548[Submit][Status] ...

  7. 【BZOJ-1864】三色二叉树 树形DP

    1864: [Zjoi2006]三色二叉树 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 659  Solved: 469[Submit][Status] ...

  8. BZOJ 1864: [Zjoi2006]三色二叉树( 树形dp )

    难得的ZJOI水题...DFS一遍就行了... ----------------------------------------------------------------------- #inc ...

  9. BZOJ_1864_[Zjoi2006]三色二叉树_树形DP

    BZOJ_1864_[Zjoi2006]三色二叉树_树形DP 题意: 分析:递归建树,然后DP,从子节点转移. 注意到红色和蓝色没有区别,因为我们可以将红蓝互换而方案是相同的.这样的话我们只需要知道当 ...

随机推荐

  1. rpm安装Clickhouse

    1. 下载相关安装包 在opt目录下创建clickhouse目录,方便下载文件 Cd /opt/clickhouse  一次执行一下命令 ① wget --content-disposition ht ...

  2. swagger--Failed to load API definition.

    打开 http://localhost:5000/swagger/v1/swagger.json 提示错误 An unhandled exception occurred while processi ...

  3. javascript 面向对象学习(二)——原型与继承

    什么是原型? 首先我们创建一个简单的空对象,再把它打印出来 var example = {} console.log(example) 结果如下: { __proto__: { constructor ...

  4. grafana 如何对数据进行切分

    也就是如何增加筛选,根据想要的条件筛选不同的内容,数据源是prometheus 效果 设置variable 正则表达式 匹配url中IP和端口 切片进阶 根据前一个切片 再过滤 含义说明 instan ...

  5. [每日一题2020.06.10]Codeforces Round #644 (Div. 3) ABCDEFG

    花了5个多少小时总算把div3打通一次( 题目链接 problem A 题意 : 两个x*y的矩形不能重叠摆放, 要放进一个正方形正方形边长最小为多少 先求n = min(2x, 2y, x+y) 再 ...

  6. TensorFlow从0到1之TensorFlow实现简单线性回归(15)

    本节将针对波士顿房价数据集的房间数量(RM)采用简单线性回归,目标是预测在最后一列(MEDV)给出的房价. 波士顿房价数据集可从http://lib.stat.cmu.edu/datasets/bos ...

  7. 搭建redis哨兵模式

    搭建redis哨兵模式,一主两从三哨兵   1.从官网下载redis安装包:此处是redis-5.0.7.tar.gz 2.上传到目录 /utxt/soft 3.解压 4.cd /utxt/soft/ ...

  8. BUAA_OO_2020_Unit4_总结博客

    BUAA_OO_2020_Unit4_总结 2020年春季学期第十六周,OO第四单元即最终章落下帷幕,本单元是利用Java进行UML类图的解析,完成对类图.顺序图.状态图的内部查询操作与简单的规则判断 ...

  9. 【JMeter_03】JMeter GUI操作界面介绍

    JMeter主界面主要分为 标题栏.菜单栏.工具栏.测试计划树形目录.内容展示区 标题栏:主要展示JMeter的程序版本.当前脚本的名称.脚本的储存路径 菜单栏:程序基本上所有功能的所属分类目录,基本 ...

  10. Jenkins项目构建运行

    [准备环境] 继Jenkins环境搭建完成后,进行插件的管理 [思路] 项目顺序是,开发提交代码到代码仓库,测试通过Jenkins拉下开发的代码打包部署: 1.开发提交代码 2.Jenkins自动从代 ...