【递归】P1157组合的输出
题目相关
题目描述
排列与组合是常用的数学方法,其中组合就是从n个元素中抽出r个元素(不分顺序且 r ≤n),我们可以简单地将n个元素理解为自然数1,2,…,n从中任取r个数。
现要求你输出所有组合。
例如n=5,r=3所有组合为:
12 3 , 1 2 4 , 1 2 5 , 1 3 4 ,1 3 5 , 1 4 5 , 2 3 4 , 2 3 5 , 2 4 5 , 3 4 5
输入格式
一行两个自然数n,r(1<n<21,0≤r≤n)。
输出格式
所有的组合,每一个组合占一行且其中的元素按由小到大的顺序排列,每个元素占三个字符的位置,所有的组合也按字典顺序。
**注意哦!输出时,每个数字需要3个场宽,pascal可以这样:
write(ans:3);
输入输出样例
输入
5 3
输出
1 2 3
1 2 4
1 2 5
1 3 4
1 3 5
1 4 5
2 3 4
2 3 5
2 4 5
3 4 5
题目链接
分析
阅读完题目,发现本题就是让我们从 1 ~ n个数中选出r个数,输出所有的组合,并且部分顺序。且对输出做出了一定的要求,元素要从小到大排列,且占三个场宽。
占三个场宽可以使用printf来实现,注意加上头文件cstdio
printf("%3d",x);//输出元素占3个场宽
选择的过程和全排列问题有些类似。每次都是从一堆数字中选一个出来加入组合,等挑完r个元素后,就输出。过程中要注意一点,他需要从小到大排列。那么我们可以使得挑选的数字比前一个选的大,这样就可以了。而不是说,选出所有的数字之后再去筛选,这样反而麻烦很多。
for(int i=ranks[pre]+1;i<=n;i++){//遍历比前一个元素大的数字
ranks[pre+1]=i;//存到组合序列中
...
}
代码实现
#include <iostream>
#include <cstdio>
using namespace std;
int n,r;
int ranks[25]={0};//存放选好的r个数字
void dfs(int sel){
//已选好sel个数字
if(sel==r){
for(int i=1;i<=r;i++){
printf("%3d",ranks[i]);
}
cout<<endl;
}else{//还未挑选好
//挑选第sel+1个数字
//其中的元素按由小到大的顺序排列
// 我的第sel+1个数字> 第sel个 ranks[sel]
for(int i=ranks[sel]+1;i<=n;i++){//第sel+1 个数字可能的值
//挑选i 存放进ranks数组中
//第sel+1 个 => ranks[sel]
ranks[sel+1]=i;
//已经选好了sel+1个数字
//递归调用 ,继续寻找下一个
dfs(sel+1);
}
}
}
int main() {
cin>>n>>r;
dfs(0);
return 0;
}
【递归】P1157组合的输出的更多相关文章
- 洛谷 P1157 组合的输出
P1157 组合的输出 题目描述 排列与组合是常用的数学方法,其中组合就是从n个元素中抽出r个元素(不分顺序且r<=n),我们可以简单地将n个元素理解为自然数1,2,…,n,从中任取r个数. 现 ...
- P1157 组合的输出
P1157 组合的输出 #include <bits/stdc++.h> using namespace std; int n,r; int a[25]; vector<int> ...
- 洛谷P1157 组合的输出
洛谷1157 组合的输出 题目描述 排列与组合是常用的数学方法,其中组合就是从n个元素中抽出r个元素(不分顺序且r<=n),我们可以简单地将n个元素理解为自然数1,2,…,n,从中任取r个数. ...
- 组合的输出(回溯、dfs)
问题 O: [回溯法]组合的输出 题目描述 排列与组合是常用的数学方法,其中组合就是从n个元素中抽出r个元素(不分顺序且r<=n),我们可以简单地将n个元素理解为自然数1,2,…,n,从中任取r ...
- (Java实现) 组合的输出
问题 B: [递归入门]组合的输出 时间限制: 1 Sec 内存限制: 128 MB 题目描述 排列与组合是常用的数学方法,其中组合就是从n个元素中抽出r个元素(不分顺序且r < = n),我们 ...
- 【递归入门】组合的输出:dfs
题目描述 排列与组合是常用的数学方法,其中组合就是从n个元素中抽出r个元素(不分顺序且r < = n),我们可以简单地将n个元素理解为自然数1,2,…,n,从中任取r个数. 现要求你不用递归的方 ...
- 组合的输出(DFS)
题目描述: 排列与组合是常用的数学方法,其中组合就是从n个元素中抽出r个元素(不分顺序且r<=n),我们可以简单地将n个元素理解为自然数1,2,…,n,从中任取r个数. 现要求你用递归的方法输出 ...
- T1317:【例5.2】组合的输出
[题目描述] 排列与组合是常用的数学方法,其中组合就是从n个元素中抽出r个元素(不分顺序且r≤n),我们可以简单地将n个元素理解为自然数1,2,…,n,从中任取r个数. 现要求你用递归的方法输出所有组 ...
- <经验杂谈>介绍Js简单的递归排列组合
最近在开发SKU模块的时候,遇到这样一个需求,某种商品有N(用未知数N来表示是因为规格的数组由用户制定且随时可以编辑的,所以对程序来说,它是一个未知数)类规格,每一类规格又有M个规格值,各种规格值的组 ...
随机推荐
- 【笔记】「pj复习」深搜——拿部分分
说在最前面 众所周知, NOIP pj 的第三题大部分都是 dp ,但是有可能在考场上想不到动态转移方程,所以我们就可以拿深搜骗分. 方法 深搜拿部分分 剪枝 记忆化 看数据范围 有时候发现,写完深搜 ...
- 笔记-[ZJOI2007]仓库建设
笔记-[ZJOI2007]仓库建设 [ZJOI2007]仓库建设 \(f_i\) 到第 \(i\) 个工厂并且建设了仓库. \[\begin{split} f_i=&\min\{f_j+\su ...
- 「 洛谷 」P2768 珍珠项链
珍珠项链 题目限制 内存限制:125.00MB 时间限制:1.00s 标准输入输出 题目知识点 动态规划 \(dp\) 矩阵 矩阵乘法 矩阵加速 矩阵快速幂 题目来源 「 洛谷 」P2768 珍珠项链 ...
- Spring源码分析之AOP从解析到调用
正文: 在上一篇,我们对IOC核心部分流程已经分析完毕,相信小伙伴们有所收获,从这一篇开始,我们将会踏上新的旅程,即Spring的另一核心:AOP! 首先,为了让大家能更有效的理解AOP,先带大家过一 ...
- django APIview使用
1.APIview使用 ModelVIewSet 是对 APIView 封装 ModelSerializer 是对 Serializer 1.1 在 user/urls.py 中添加路由 urlpat ...
- 「 洛谷 」P4539 [SCOI2006]zh_tree
小兔的话 推荐 小兔的CSDN [SCOI2006]zh_tree 题目限制 内存限制:250.00MB 时间限制:1.00s 标准输入输出 题目知识点 思维 动态规划 \(dp\) 区间\(dp\) ...
- Docker(二):Docker镜像仓库Harbor搭建
安装docker-compose 因为docker-compose下载容易失败, 所以选择从github下载方式安装. [root@harbor ~]# mv docker-compose-Linux ...
- Loading class `com.mysql.jdbc.Driver'. This is deprecated警告处理
com.mysql.jdbc.Driver 和 com.mysql.cj.jdbc.Driver的区别 mysql客户端6以后,数据库驱动com.mysql.jdbc.Driver'已经被弃用了.应当 ...
- 七轮面试最终拿下阿里offer —— 十年经验之谈
前言 今年的大环境非常差,互联网企业裁员的现象比往年更严重了,可今年刚好是我的第一个"五年计划"截止的时间点,说什么也不能够耽搁了,所以早早准备的跳槽也在疫情好转之后开始进行了.但 ...
- php学习之sqlite查询语句之多条件查询
一.PHP+Mysql多条件-多值查询示例代码: index.html代码:<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitio ...