Description

If we connect 3 numbers with "<" and "=", there are 13 cases: 
1) A=B=C 
2) A=B<C 
3) A<B=C 
4) A<B<C 
5) A<C<B 
6) A=C<B 
7) B<A=C 
8) B<A<C 
9) B<C<A 
10) B=C<A 
11) C<A=B 
12) C<A<B 
13) C<B<A

If we connect n numbers with "<" and "=", how many cases then?

 

Input

The input starts with a positive integer P(0<P<1000) which indicates the number of test cases. Then on the following P lines, each line consists of a positive integer n(1<=n<=50) which indicates the amount of numbers to be connected. 
 

Output

For each input n, you should output the amount of cases in a single line. 
 

Sample Input

2
1
3
 

Sample Output

1
13

Hint

Hint  Huge input, scanf is recommended.

source:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=95378#problem/E

参考博客:http://blog.csdn.net/acm_ted/article/details/7439043

这道题需要存储的数比较大,需要存下“500!”这么大的数,c或者c++的大数不会写,java提供大数类,直接用比较方便,我现在不会,就先写下思路,以后写题

问题:输入字母个数n,用大于小于等于号把这些字母连接起来的所有情况数
   注意(A = B > C)和(C < B = A)是一样的
思路:因为等于是相互的,算作一种情况,所以可以把所有相等的数分为一堆,看作一个字符
   这样就只剩下大于和小于号了
    由于 A > B和B < A也是一样的,所以我们可以假设只有大于号或者小于号
    然后把所有的数排列一下就行了

   由于分的堆的数目和每堆中的数据个数都是未知的,我们无法直接下手算i个字母连接的情况数
   但是我们可以通过递推,由前一种情况逐步找到要找的情况
   num[i][j]表示i个数分了j堆的连接数
   那么num[i][j] =        //注意最终形成了j堆, 不妨设所有的堆都是用小于号链接的
           num[i-1][j-1]*j
                  //最后一个数独立形成一堆,num[i-1][j-1]表示在最后一个数加入之前的排列数
                  //那么最后一个数加入的时候,就有j个位置可以选择,所以乘以j
           +num[i-1][j]*j;
                  //最后一个数和前面某一堆中的数据相等,加最后一个数之前的情况数为num[i-1][j]
                  //最后一个数入的堆可能是j堆中的任意一个,所以乘以j
   其实找到状态转义方程都好说num[i][j] = (num[i-1][j-1] + num[i-1][j])*j;
   初始化:num[i][j]为0;num[n][1]都为1
   

     f(1, 1) = 1
   f(2, 1) = 1, f(2, 2) = 2;
   f(3, 1) = 1, f(3, 2) = 6, f(3, 3) = 6;
   ……
   f(n, 1) = 1, ………………………………………………………………………………f(n, n) = A(n, n);
   因为我们假设符号已经排好, 就把这些数填进去就行,所以我们只需要算这些数放置的方法数即可
   除了f(i, 1) = 1; f(i, i) = A(i, i) (1 <= i <= n)之外,其他数都是按照我们推倒出来的公式计算的

   因为n可能为500这样我们就需要存储n的阶乘,需要大数运算,看网上有人用java的大数类直接存的,
   现在我还不会,先把思路了写下来,以后做

  

递推,大数存储E - Order Count的更多相关文章

  1. Tiling(递推+大数)

    Description In how many ways can you tile a 2xn rectangle by 2x1 or 2x2 tiles? Here is a sample tili ...

  2. Children’s Queue HDU 1297 递推+大数

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1297 题目大意: 有n个同学, 站成一排, 要求 女生最少是两个站在一起, 问有多少种排列方式. 题 ...

  3. ACM学习历程—HDU1041 Computer Transformation(递推 && 大数)

    Description A sequence consisting of one digit, the number 1 is initially written into a computer. A ...

  4. 【hdoj_1865】1sting(递推+大数)

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=1865 本题的关键是找递推关系式,由题目,可知前几个序列的结果,序列长度为n=1,2,3,4,5的结果分别是 ...

  5. poj 2506 Tiling(递推 大数)

    题目:http://poj.org/problem?id=2506 题解:f[n]=f[n-2]*2+f[n-1],主要是大数的相加; 以前做过了的 #include<stdio.h> # ...

  6. ACM学习历程—HDU1023 Train Problem II(递推 && 大数)

    Description As we all know the Train Problem I, the boss of the Ignatius Train Station want to know  ...

  7. HDU1134/HDU1133 递推 大数 java

    Game of Connections Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Othe ...

  8. Buy the Ticket HDU 1133 递推+大数

    题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=1133 题目大意: 有m+n个人去买电影票,每张电影票50元,  m个人是只有50元一张的,  n个人 ...

  9. UVA11375火柴(递推+大数)

    题意:       给你n根火柴,问你能组成多少种数字,比如3根可以组成1或者7,组成的数字中不能有前导0, 思路:       我们开一个数组,d[i]记录用i跟火柴可以组成多少种数字,则更新状态是 ...

随机推荐

  1. [IOI1996] USACO Section 5.3 Network of Schools(强连通分量)

    nocow上的题解很好. http://www.nocow.cn/index.php/USACO/schlnet 如何求强连通分量呢?对于此题,可以直接先用floyd,然后再判断. --------- ...

  2. Linux 系统之Sysvinit

    子贡问为仁.子曰:“工欲善其事,必先利其器.居是邦也,事其大夫之贤者,友其士之仁者.”——孔子(春秋)<论语·卫灵公> [工欲善其事,必先利其器] 掌握一门技术,知道其发展历程是非常重要的 ...

  3. LintCode-两个字符串是变位词

    题目描述: 写出一个函数 anagram(s, t) 去判断两个字符串是否是颠倒字母顺序构成的 样例 给出 s="abcd",t="dcab",返回 true ...

  4. 关于struts2的checkboxlist、select等标签发生could not be resolved as a collection/array/map/enumeration/iterator type异常的记录

    1 刚进入该界面的时候发生错误,原因是 list="roles"中的这个集合是空的,导致错误 解决办法很简单,不能让list为空 2 刚进入该界面的时候list是有数据的,当点击提 ...

  5. c++中的成员选择符

    c++中支持仅能指向类成员的指针,对这种类型的指针进行数据的提取操作时,可使用如下两种类型的操作符:成员对象选择操作符.* 和 成员指针选择操作符->* 例一: #include <ios ...

  6. POJ-1010 Stamps

    [题目描述] 题目大意是:邮票发行商会发行不同面值.不同种类的邮票给集邮爱好者,集邮爱好者有总目标面额,通过不同的邮票组合(总数在4张以内)达到该面值,卖给集邮爱好者.另外,发行商发行的邮票面值最多2 ...

  7. swift3.0 hello swift(1)

    一直对swift感兴趣,在前段时间的新闻中,大多是swift3.0发布和xcode8.0的改进,因为改动比较大,以前使用swift2.x做项目的人,都在担心其项目从2.x迁移到3.0+的问题.以前简单 ...

  8. vmware 几种联网的方式,怎样实现虚拟机上网

    我的pc有一个IP地址是可以訪问网络的,那么如何让VM可以共享我的IP地址,也能上网呢.今天在摸索中实现了,详细的配置例如以下: 1,首先将VM的网卡net8启用: 2,然后将VM的网卡设置为VMne ...

  9. BI商业智能项目中的若干风险要素

    BI商业智能项目应在 “业务驱动,总体规划,统一设计,分期实施” 的总体设计原则下分期实施,采取Agile BI方法论迭代开展,先确保核心功能满足客户需求,在总体规划下不断完善整个系统,以提高可交付性 ...

  10. 界面调试工具Reveal的使用介绍

    Reveal 注: 此处介绍Reveal,其中大部分内容来自于唐巧的<iOS开发进阶>一书,以此说明. 如何使用Reveal进行模拟器调试,只需进行以下三个步骤即可. 1. 创建.lldb ...