POJ 3047 Fibonacci
DEBUG很辛苦,且行, 且珍惜
原代码:
ans[0][0] = (ans[0][0] * a[flag][0][0] + ans[0][1] * a[flag][1][0]) % 10000;
ans[0][1] = (ans[0][0] * a[flag][0][1] + ans[0][1] * a[flag][1][1]) % 10000;
ans[1][0] = (ans[1][0] * a[flag][0][0] + ans[1][1] * a[flag][1][0]) % 10000;
ans[1][1] = (ans[1][0] * a[flag][0][1] + ans[1][1] * a[flag][1][1]) % 10000;
问题在于:修改后ans[][]的值再次调用,就不是原来的值了,会导致程序出错
QAQ
改进后:
ans[0][0] = (temp_1 * a[flag][0][0] + temp_2 * a[flag][1][0]) % 10000;
ans[0][1] = (temp_1 * a[flag][0][1] + temp_2 * a[flag][1][1]) % 10000;
ans[1][0] = (temp_3 * a[flag][0][0] + temp_4 * a[flag][1][0]) % 10000;
ans[1][1] = (temp_3 * a[flag][0][1] + temp_4 * a[flag][1][1]) % 10000;
算法思路:利用快速幂,实现大数范围的快速计算,不会超时
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <iostream>
#include <algorithm> using namespace std;
const int INF = 0x3f3f3f3f; int a[][][];
void test_print(){
for(int i = ; i < ; ++i){
printf("i = %d\n",i);
printf("%d\n\n",a[i][][]);
}
}
int main(){
int i, j, k;
int n;
a[][][] = ;
a[][][] = ;
a[][][] = ;
a[][][] = ;// n = 1 for(i = ; i < ; ++i){
a[i][][] = (a[i-][][] * a[i-][][] + a[i-][][] * a[i-][][]) % ;
a[i][][] = (a[i-][][] * a[i-][][] + a[i-][][] * a[i-][][]) % ;
a[i][][] = (a[i-][][] * a[i-][][] + a[i-][][] * a[i-][][]) % ;
a[i][][] = (a[i-][][] * a[i-][][] + a[i-][][] * a[i-][][]) % ;
}
// test_print();
while(EOF != scanf("%d",&n)){
if(- == n) break;
else if( == n){
printf("0\n");
continue;
}
int count = ;
int flag;
int ans[][];
int array[];
int flag_t = ;
bool init_ok = false;
memset(array, , sizeof(array));
while(n){
if(n % == ){
n /= ;
array[flag_t] = ;
} else{
n = (n - ) / ;
array[flag_t] = ;
}
++flag_t;
}
//for(i = 0; i < flag_t / 2; ++i) swap(array[i], array[flag_t - i -1 ]);
for(i = ; i < flag_t; ++i){
if(!array[i]) continue;
int flag = i;
if(!init_ok){
ans[][] = a[i][][];
ans[][] = a[i][][];
ans[][] = a[i][][];
ans[][] = a[i][][];
init_ok = true;
continue;
}
int temp_1 = ans[][];
int temp_2 = ans[][];
int temp_3 = ans[][];
int temp_4 = ans[][];
ans[][] = (temp_1 * a[flag][][] + temp_2 * a[flag][][]) % ;
ans[][] = (temp_1 * a[flag][][] + temp_2 * a[flag][][]) % ;
ans[][] = (temp_3 * a[flag][][] + temp_4 * a[flag][][]) % ;
ans[][] = (temp_3 * a[flag][][] + temp_4 * a[flag][][]) % ;
}
printf("%d\n",ans[][]);
}
return ;
}
POJ 3047 Fibonacci的更多相关文章
- 矩阵快速幂 POJ 3070 Fibonacci
题目传送门 /* 矩阵快速幂:求第n项的Fibonacci数,转置矩阵都给出,套个模板就可以了.效率很高啊 */ #include <cstdio> #include <algori ...
- POJ 3047 Bovine Birthday 日期定周求 泽勒公式
标题来源:POJ 3047 Bovine Birthday 意甲冠军:.. . 思考:式 适合于1582年(中国明朝万历十年)10月15日之后的情形 公式 w = y + y/4 + c/4 - 2* ...
- POJ 3070 Fibonacci
Description In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. F ...
- 矩阵经典题目六:poj 3070 Fibonacci
http://poj.org/problem?id=3070 按已构造好的矩阵,那么该矩阵的n次方的右上角的数便是f[n]. #include <stdio.h> #include < ...
- POJ 3070 Fibonacci(矩阵高速功率)
职务地址:POJ 3070 用这个题学会了用矩阵高速幂来高速求斐波那契数. 依据上个公式可知,第1行第2列和第2行第1列的数都是第n个斐波那契数.所以构造矩阵.求高速幂就可以. 代码例如以下: #in ...
- poj 3070 Fibonacci (矩阵快速幂乘/模板)
题意:给你一个n,输出Fibonacci (n)%10000的结果 思路:裸矩阵快速幂乘,直接套模板 代码: #include <cstdio> #include <cstring& ...
- poj 3070 Fibonacci 矩阵快速幂
Description In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. F ...
- POJ 3070 Fibonacci 【矩阵快速幂】
<题目链接> Description In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 ...
- poj 3070 Fibonacci 矩阵相乘
Fibonacci Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7715 Accepted: 5474 Descrip ...
随机推荐
- MVC-03 控制器(2)
五.ActionResult解说 ActionResult的继承图: 类型 Controller辅助方法 用途帮助 ContentResult Content 回传一个用户自定义的文字属性 Empty ...
- Delphi中取整函数Round的Bug解决
Delphi中 Round函数有个Bug一旦参数是形如 XXX.5这样的数时如果 XXX 是奇数 那么就会 Round up如果 XXX 是偶数 那么就会 Round down例如 Round(17. ...
- php单元測试
你是否在程序开发的过程中遇到下面的情况:当你花了非常长的时间开发一个应用后,你觉得应该是大功告成了,可惜在调试的时候,老是不断的发现bug,并且最可怕的是,这些bug是反复出现的,你可能发现这些bug ...
- HDU2795 billboard【转化为线段树。】
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2795 hhanger大神的题目,水题都得有点思维. 题意:h*w的木板,放进一些1*L的物品,求每次放 ...
- 两种MD5最后的值不一样,因为两种做法不一样
//MD5加密 private static string Md5Hash(string input) { MD5CryptoServiceProvider m ...
- 重新生成IE02
procedure ReBuild_IE02( pi_aac001 in number, po_fhz out varchar2, po_msg out varchar2) is type typ_t ...
- C#变量命名规范
1.1命名 1. 所有命名必须有意义 2. 成员变量声明在类的顶端,并且每个变量一行 3. 局部变量声明在引用之前 1.1.1 常量命名 1. 常量名用全大写:MAX_PARAMETER_C ...
- codeforces 623A. Graph and String 构造
题目链接 给出一个图, 每个节点只有三种情况, a,b, c. a能和a, b连边, b能和a, b, c,连边, c能和b, c连边, 且无重边以及自环.给出初始的连边情况, 判断这个图是否满足条件 ...
- [LeetCode]题解(python):066-Plus One
题目来源: https://leetcode.com/problems/plus-one/ 题意分析: 给定一个数组,将数加一,返回新的数组.比如[9,9],返回[1,0,0]. 题目思路: 这道题目 ...
- 使用Jquery后去div个数
<div id="tree1" class="tree-folder-content"> <div class="tree-fold ...