POJ 3047 Fibonacci
DEBUG很辛苦,且行, 且珍惜
原代码:
ans[0][0] = (ans[0][0] * a[flag][0][0] + ans[0][1] * a[flag][1][0]) % 10000;
ans[0][1] = (ans[0][0] * a[flag][0][1] + ans[0][1] * a[flag][1][1]) % 10000;
ans[1][0] = (ans[1][0] * a[flag][0][0] + ans[1][1] * a[flag][1][0]) % 10000;
ans[1][1] = (ans[1][0] * a[flag][0][1] + ans[1][1] * a[flag][1][1]) % 10000;
问题在于:修改后ans[][]的值再次调用,就不是原来的值了,会导致程序出错
QAQ
改进后:
ans[0][0] = (temp_1 * a[flag][0][0] + temp_2 * a[flag][1][0]) % 10000;
ans[0][1] = (temp_1 * a[flag][0][1] + temp_2 * a[flag][1][1]) % 10000;
ans[1][0] = (temp_3 * a[flag][0][0] + temp_4 * a[flag][1][0]) % 10000;
ans[1][1] = (temp_3 * a[flag][0][1] + temp_4 * a[flag][1][1]) % 10000;
算法思路:利用快速幂,实现大数范围的快速计算,不会超时
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <iostream>
#include <algorithm> using namespace std;
const int INF = 0x3f3f3f3f; int a[][][];
void test_print(){
for(int i = ; i < ; ++i){
printf("i = %d\n",i);
printf("%d\n\n",a[i][][]);
}
}
int main(){
int i, j, k;
int n;
a[][][] = ;
a[][][] = ;
a[][][] = ;
a[][][] = ;// n = 1 for(i = ; i < ; ++i){
a[i][][] = (a[i-][][] * a[i-][][] + a[i-][][] * a[i-][][]) % ;
a[i][][] = (a[i-][][] * a[i-][][] + a[i-][][] * a[i-][][]) % ;
a[i][][] = (a[i-][][] * a[i-][][] + a[i-][][] * a[i-][][]) % ;
a[i][][] = (a[i-][][] * a[i-][][] + a[i-][][] * a[i-][][]) % ;
}
// test_print();
while(EOF != scanf("%d",&n)){
if(- == n) break;
else if( == n){
printf("0\n");
continue;
}
int count = ;
int flag;
int ans[][];
int array[];
int flag_t = ;
bool init_ok = false;
memset(array, , sizeof(array));
while(n){
if(n % == ){
n /= ;
array[flag_t] = ;
} else{
n = (n - ) / ;
array[flag_t] = ;
}
++flag_t;
}
//for(i = 0; i < flag_t / 2; ++i) swap(array[i], array[flag_t - i -1 ]);
for(i = ; i < flag_t; ++i){
if(!array[i]) continue;
int flag = i;
if(!init_ok){
ans[][] = a[i][][];
ans[][] = a[i][][];
ans[][] = a[i][][];
ans[][] = a[i][][];
init_ok = true;
continue;
}
int temp_1 = ans[][];
int temp_2 = ans[][];
int temp_3 = ans[][];
int temp_4 = ans[][];
ans[][] = (temp_1 * a[flag][][] + temp_2 * a[flag][][]) % ;
ans[][] = (temp_1 * a[flag][][] + temp_2 * a[flag][][]) % ;
ans[][] = (temp_3 * a[flag][][] + temp_4 * a[flag][][]) % ;
ans[][] = (temp_3 * a[flag][][] + temp_4 * a[flag][][]) % ;
}
printf("%d\n",ans[][]);
}
return ;
}
POJ 3047 Fibonacci的更多相关文章
- 矩阵快速幂 POJ 3070 Fibonacci
题目传送门 /* 矩阵快速幂:求第n项的Fibonacci数,转置矩阵都给出,套个模板就可以了.效率很高啊 */ #include <cstdio> #include <algori ...
- POJ 3047 Bovine Birthday 日期定周求 泽勒公式
标题来源:POJ 3047 Bovine Birthday 意甲冠军:.. . 思考:式 适合于1582年(中国明朝万历十年)10月15日之后的情形 公式 w = y + y/4 + c/4 - 2* ...
- POJ 3070 Fibonacci
Description In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. F ...
- 矩阵经典题目六:poj 3070 Fibonacci
http://poj.org/problem?id=3070 按已构造好的矩阵,那么该矩阵的n次方的右上角的数便是f[n]. #include <stdio.h> #include < ...
- POJ 3070 Fibonacci(矩阵高速功率)
职务地址:POJ 3070 用这个题学会了用矩阵高速幂来高速求斐波那契数. 依据上个公式可知,第1行第2列和第2行第1列的数都是第n个斐波那契数.所以构造矩阵.求高速幂就可以. 代码例如以下: #in ...
- poj 3070 Fibonacci (矩阵快速幂乘/模板)
题意:给你一个n,输出Fibonacci (n)%10000的结果 思路:裸矩阵快速幂乘,直接套模板 代码: #include <cstdio> #include <cstring& ...
- poj 3070 Fibonacci 矩阵快速幂
Description In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. F ...
- POJ 3070 Fibonacci 【矩阵快速幂】
<题目链接> Description In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 ...
- poj 3070 Fibonacci 矩阵相乘
Fibonacci Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7715 Accepted: 5474 Descrip ...
随机推荐
- C++的二进制兼容问题(以QT为例)
二进制不兼容带来的问题(需要重新编译库文件,以前编译的失效): http://my.oschina.net/lieefu/blog/505363?fromerr=f5jn7rct 二进制不兼容的原理: ...
- fedora 安装pylab 并简单绘制三角函数
pylab 由 三个部分组成:scipy, matplotlab, numpy三部分组成,安装时需要分别安装这三部分,在fedora中,可以使用命令: sudo dnf install python- ...
- 移动开发语言Swift
苹果公布了全新的编程语言Swift,Swift继承了Objective-C语言特性,并从Python和Java Script中长处,使Swift更易读.未来swift编程语言的会特大广大的使用 Swi ...
- cocos2d基础入门
HelloCpp中Classes目录下放开发者自己的类: win32:平台相关,coco2d已默认创建:coco2d-x目录下,samples/cpp/HelloCpp/(工程根目录)图片放置位置:根 ...
- DevExpress ASP.NET 使用经验谈(7)-ASPxTreeList控件使用
这一节,将介绍ASPxTreeList控件的使用,首先,我们增加一个标准地址库表AddressGB, 建表语句如下: CREATE TABLE [dbo].[AddressGB]( [Code] [v ...
- 实现JQuery_Accordion功能
1. 添加AJAX引用 <script type="text/javascript" src="http://ajax.googleapis.com/ajax/li ...
- 用户登录session_id观看
通过使用浏览器firefox或者google看cookie id, 这样就知道登录状态怎么样了
- BZOJ 2463 谁能赢呢?
刚开始做这道题时,我纠结了许久什么是最优走法,想了好半天也不晓得,后来被大神点醒,最有走法,最后就是每个格子都走了一遍,得,这下简单多了,算一下总共的格数是奇数还是偶数,奇数则先手赢,偶 ...
- javascript 学习随笔7
<head> <title>标题页-学无忧(www.xue51.com)</title> <script language="JavaScript& ...
- Android Studio does not point to a valid jvm
环境变量 JAVA_HOME的值,去掉后面的分号,一般情况下就可以启动