While preparing this problem set the jury has run into the following problem: it was necessary to send by e-mail the texts of the problems. As it is well known, e-mail is not reliable, messages are sent not enciphered, there is a danger that someone can intercept them. The members of the program committee wanted no participant know the texts of the problems before the start of the contest. That's why they resorted to cryptography methods in order to save the texts of the problems from an unsanctioned reading. The jury gas worked up a new way of enciphering of a text. It is not patented yet, so it's kept secret. However, we'll reveal you one secret: the new algorithm is based on the work with prime numbers. In particular, in uses a calculation of n-th by order prime number.
Several members of the program committee independently have worked up programs that make such calculations, but these programs produce different answers. Each one of the programmers is sure that his program works correctly. That's why the jury has reached the deadlock and can't continue working. The contest is about not to take place.
You are to help to the jury and to save the contest. We want you to write a program that calculates the n-th by order prime number. The main thing is that your program should work correctly.

Input

First line contains a positive integer k. Then k positive integers follow (one in each line). The numbers don't exceed 15000.

Output

For each number n you should output the n-th by order prime number. Each number should be in its line.

Sample

input output
4
3
2
5
7
5
3
11
17

Hint

The prime number is a positive integer that has exactly two different positive divisors, i.e. 1 is not a prime number.
Problem Author: folklore Problem Source: The 3rd high school children programming contest, USU, Yekaterinburg, Russia, March 4, 2001

算法:

构建素数表,假设已经构建了素数表[p1,p2,p3……pk],找出第k+1个素数,依次将待检测的奇数n 除以pi(1 <= i <= k),若整除,则说明n为合数,否则为素数,继续构建素数表,直至素数表中的数目达到要求
// Ural Problem 1086. Cryptography
// Judgement result: Accepted
// Submission Date: 10:51 16 Jan 2014
// Run Time: 0.812s
// Memory used: 273KB
// Language: GCC 4.7.2 C11
//
// 版权所有(C)acutus (mail: acutus@126.com)
// 博客地址:http://www.cnblogs.com/acutus/// [解题方法]
// 简单素数题,直接打表判断 #include<stdio.h> int a[];
void init()
{
int i, count, flag, j;
flag = ;
count = ;
a[] = ;
a[] = ;
j = ;
while() {
for(i = ; i <= count; i++){
if(j % a[i] == ) {
flag = ;
break;
}
}
if(flag){
count++;
a[count] = j;
}
flag = ;
j += ;
if(count > ) break;
}
} void solve()
{
int n, N;
init();
scanf("%d", &N);
while(N--) {
scanf("%d", &n);
printf("%d\n", a[n]);
}
} int main()
{
solve();
return ;
}

Ural 1086 - Cryptography的更多相关文章

  1. URAL题解二

    URAL题解二 URAL 1082 题目描述:输出程序的输入数据,使得程序输出"Beutiful Vasilisa" solution 一开始只看程序的核心部分,发现是求快排的比较 ...

  2. 【线性筛】【筛法求素数】【素数判定】URAL - 2102 - Michael and Cryptography

    暴力搞肯定不行,因此我们从小到大枚举素数,用n去试除,每次除尽,如果已经超过20,肯定是no.如果当前枚举到的素数的(20-已经找到的质因子个数)次方>剩下的n,肯定也是no.再加一个关键的优化 ...

  3. .Net使用system.Security.Cryptography.RNGCryptoServiceProvider类与System.Random类生成随机数

    .Net中我们通常使用Random类生成随机数,在一些场景下,我却发现Random生成的随机数并不可靠,在下面的例子中我们通过循环随机生成10个随机数: ; i < ; i++) { Rando ...

  4. ECC-Elliptic Curves Cryptography,椭圆曲线密码编码学

    ECC ECC-Elliptic Curves Cryptography,椭圆曲线密码编码学,是目前已知的公钥体制中,对每比特所提供加密强度最高的一种体制.在软件注册保护方面起到很大的作用,一般的序列 ...

  5. "System.Security.Cryptography.CryptographicException: 拒绝访问" 问题的解决方法

    .net web程序使用rsa算法进行加解密时,程序报告“System.Security.Cryptography.CryptographicException: 拒绝访问”错.按网上搜的解决方法做了 ...

  6. BZOJ 1086: [SCOI2005]王室联邦

    1086: [SCOI2005]王室联邦 Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 1399  Solved: ...

  7. HDOJ(2056)&HDOJ(1086)

    Rectangles    HDOJ(2056) http://acm.hdu.edu.cn/showproblem.php?pid=2056 题目描述:给2条线段,分别构成2个矩形,求2个矩形相交面 ...

  8. System.Security.Cryptography.CryptographicException: 指定了无效的提供程序类型

    这两天在调用银联在线的支付接口,把银联提供的demo代码copy过来放到自己网站上,生成通过了,但是运行的时候就报错了: 指定了无效的提供程序类型. 说明: 执行当前 Web 请求期间,出现未经处理的 ...

  9. [POJ2109]Power of Cryptography

    [POJ2109]Power of Cryptography 试题描述 Current work in cryptography involves (among other things) large ...

随机推荐

  1. Linux C 简易聊天室

    Linux下实现聊天室 介绍:程序在CentOS下,采用C语言实现,结构为Client/Server结构; 服务端程序通过共享存储区存储聊天数据,并发送给每个连接的客户端: 服务端程序和客户端程序都是 ...

  2. [转]如何理解c和c ++的复杂类型声明

    本文作者girlrong是网易广州社区的C语言版版主,这篇文章被选在精华区.很是不错,不敢独享!据说她乐于助人,虚心诚恳,颇受网友欢迎.只可惜现在已退隐江湖了.在最近学习C语言过程中,了解些前辈大牛的 ...

  3. LintCode-字符串查找

    题目描述: 对于一个给定的 source 字符串和一个 target 字符串,你应该在 source 字符串中找出 target 字符串出现的第一个位置(从0开始).如果不存在,则返回 -1. 说明 ...

  4. jqmobile

    标准页面结构 <!DOCTYPE html> <html> <head> <title>Page Title</title> <lin ...

  5. 我的第一个REST客户端程序!

    Delphi:XE8 看了好几天的资料了,也没有弄出来一个REST程序,尝试了XE8中带的例子,也都没有搞懂.我在网上不断搜索,看是否能够找到适合自己的文章,希望能够做出来一个REST的小例子,万幸, ...

  6. HDU 1286 找新朋友

    题解:分析题目,就是一个裸的欧拉函数,于是AC. #include <cstdio> int eular(int n){ int ret=1,i; for(i=2;i*i<=n;i+ ...

  7. 【Leetcode】Triangle

    给定一个由数字组成的三角形,从顶至底找出路径最小和. Given a triangle, find the minimum path sum from top to bottom. Each step ...

  8. http://localhost:8080/ 演出Oracle说明

    输入http://localhost:8080,可以出现tomcat主页.并且我检查过啦,jdk.tomcat及oracle中的环境变量都设置对啦,可是安装oracle之后,再输入http://loc ...

  9. URlRewriter组件下载及使用说明

    下载地址:http://www.chx99.cn/file/URLRewriter.rar在web.config添加如下配置节: <httpHandlers>    <add ver ...

  10. ajax不执行success回调而是执行了error回调

    最近在看jQuery的API文档,在使用到jQuery的ajax时,如果指定了dataType为json,老是不执行success回调,而是执行了error回调函数.   附上代码如下: JScrip ...