While preparing this problem set the jury has run into the following problem: it was necessary to send by e-mail the texts of the problems. As it is well known, e-mail is not reliable, messages are sent not enciphered, there is a danger that someone can intercept them. The members of the program committee wanted no participant know the texts of the problems before the start of the contest. That's why they resorted to cryptography methods in order to save the texts of the problems from an unsanctioned reading. The jury gas worked up a new way of enciphering of a text. It is not patented yet, so it's kept secret. However, we'll reveal you one secret: the new algorithm is based on the work with prime numbers. In particular, in uses a calculation of n-th by order prime number.
Several members of the program committee independently have worked up programs that make such calculations, but these programs produce different answers. Each one of the programmers is sure that his program works correctly. That's why the jury has reached the deadlock and can't continue working. The contest is about not to take place.
You are to help to the jury and to save the contest. We want you to write a program that calculates the n-th by order prime number. The main thing is that your program should work correctly.

Input

First line contains a positive integer k. Then k positive integers follow (one in each line). The numbers don't exceed 15000.

Output

For each number n you should output the n-th by order prime number. Each number should be in its line.

Sample

input output
4
3
2
5
7
5
3
11
17

Hint

The prime number is a positive integer that has exactly two different positive divisors, i.e. 1 is not a prime number.
Problem Author: folklore Problem Source: The 3rd high school children programming contest, USU, Yekaterinburg, Russia, March 4, 2001

算法:

构建素数表,假设已经构建了素数表[p1,p2,p3……pk],找出第k+1个素数,依次将待检测的奇数n 除以pi(1 <= i <= k),若整除,则说明n为合数,否则为素数,继续构建素数表,直至素数表中的数目达到要求
// Ural Problem 1086. Cryptography
// Judgement result: Accepted
// Submission Date: 10:51 16 Jan 2014
// Run Time: 0.812s
// Memory used: 273KB
// Language: GCC 4.7.2 C11
//
// 版权所有(C)acutus (mail: acutus@126.com)
// 博客地址:http://www.cnblogs.com/acutus/// [解题方法]
// 简单素数题,直接打表判断 #include<stdio.h> int a[];
void init()
{
int i, count, flag, j;
flag = ;
count = ;
a[] = ;
a[] = ;
j = ;
while() {
for(i = ; i <= count; i++){
if(j % a[i] == ) {
flag = ;
break;
}
}
if(flag){
count++;
a[count] = j;
}
flag = ;
j += ;
if(count > ) break;
}
} void solve()
{
int n, N;
init();
scanf("%d", &N);
while(N--) {
scanf("%d", &n);
printf("%d\n", a[n]);
}
} int main()
{
solve();
return ;
}

Ural 1086 - Cryptography的更多相关文章

  1. URAL题解二

    URAL题解二 URAL 1082 题目描述:输出程序的输入数据,使得程序输出"Beutiful Vasilisa" solution 一开始只看程序的核心部分,发现是求快排的比较 ...

  2. 【线性筛】【筛法求素数】【素数判定】URAL - 2102 - Michael and Cryptography

    暴力搞肯定不行,因此我们从小到大枚举素数,用n去试除,每次除尽,如果已经超过20,肯定是no.如果当前枚举到的素数的(20-已经找到的质因子个数)次方>剩下的n,肯定也是no.再加一个关键的优化 ...

  3. .Net使用system.Security.Cryptography.RNGCryptoServiceProvider类与System.Random类生成随机数

    .Net中我们通常使用Random类生成随机数,在一些场景下,我却发现Random生成的随机数并不可靠,在下面的例子中我们通过循环随机生成10个随机数: ; i < ; i++) { Rando ...

  4. ECC-Elliptic Curves Cryptography,椭圆曲线密码编码学

    ECC ECC-Elliptic Curves Cryptography,椭圆曲线密码编码学,是目前已知的公钥体制中,对每比特所提供加密强度最高的一种体制.在软件注册保护方面起到很大的作用,一般的序列 ...

  5. "System.Security.Cryptography.CryptographicException: 拒绝访问" 问题的解决方法

    .net web程序使用rsa算法进行加解密时,程序报告“System.Security.Cryptography.CryptographicException: 拒绝访问”错.按网上搜的解决方法做了 ...

  6. BZOJ 1086: [SCOI2005]王室联邦

    1086: [SCOI2005]王室联邦 Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 1399  Solved: ...

  7. HDOJ(2056)&HDOJ(1086)

    Rectangles    HDOJ(2056) http://acm.hdu.edu.cn/showproblem.php?pid=2056 题目描述:给2条线段,分别构成2个矩形,求2个矩形相交面 ...

  8. System.Security.Cryptography.CryptographicException: 指定了无效的提供程序类型

    这两天在调用银联在线的支付接口,把银联提供的demo代码copy过来放到自己网站上,生成通过了,但是运行的时候就报错了: 指定了无效的提供程序类型. 说明: 执行当前 Web 请求期间,出现未经处理的 ...

  9. [POJ2109]Power of Cryptography

    [POJ2109]Power of Cryptography 试题描述 Current work in cryptography involves (among other things) large ...

随机推荐

  1. Git使用记录(二)

    一)git init 初始化仓库 要使用Git进行版本管理,必须先初始化仓库,请先建立一个目录并初始化仓库 mkdir gittest cd gittest git init 初始化成功以后会在当前目 ...

  2. Page Cache, the Affair Between Memory and Files

    Previously we looked at how the kernel manages virtual memory for a user process, but files and I/O ...

  3. 干I​n​l​a​y​的​生​产​过​程​

    •天线的组成 天线的材料有0.38PET和0.16以及0.3的铝箔组成. 倒封装 •将IC倒装在天线焊盘位置. •方法:先点胶水, 然后把IC对准焊盘(IC一面有凸点),通过热压把IC 固定在焊盘上. ...

  4. Json.Net系列教程 4.Linq To JSON

    原文 Json.Net系列教程 4.Linq To JSON 更改历史 2013-05-31 添加一个FAQ   一.Linq to JSON是用来干什么的? Linq to JSON是用来操作JSO ...

  5. 基于Visual C++2013拆解世界五百强面试题--题9-找出所有的排列方式

    给出一个函数来输出一个字符串的所有排列 按照排列组合的知识我们知道 N个字符排列组合个数有n!种, 那么可知f(n) = n*f(n-1), 如果{1,2}的组合有两种,12,21, 那么{123}的 ...

  6. C++_template_栈的链式存储及实现

    由于在C++数据结构中的代码不完整,特补全.等日后当工程库调用. 若有疑问,请留言. #include<iostream> using namespace std; template< ...

  7. Android JNI开发提高篇

    有关JNI的开发技术,我们继续围绕Android平台进行,JNI可以支持C或C++,从目前为止我们写过的JNI代码均为C实现的,即文件名为.C而C++的和这些有什么不同呢? Android平台上的JN ...

  8. Linux虚拟机与外面系统ping不通,或者连不上网

    很多其它具体文档:http://download.csdn.net/download/zml_2015/8843061 非常多人在做linux课程设计的时候,用的linux虚拟机与外面的系统ping不 ...

  9. Android中图片处理相关问题

    在Android的开发中,我们经常回去处理一些图片相关的问题,比如当加载图片到内存中产生的OOM(OutOfMemory)异常.图片加载到内存中占多大内存的问题.jpg png两种常见的图片的原理及区 ...

  10. 使用OFFSET-FETCH进行数据过滤

    TOP的工业标准版 OFFSET-FETCH OFFSET 用来设置跳过行的数量 FETCH 用来设置检索多少行,必须要排序才能用,SQL Server 2012的新语法 从语意的角度来讲如果要跳开几 ...