题目连接:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=1576

13935381 10635 Prince and Princess Accepted C++ 0.095 2014-07-24 03:41:18

Prince and Princess
Input: Standard Input

Output: Standard Output

Time Limit: 3 Seconds

In an n x n chessboard, Prince and Princess plays a game. The squares in the chessboard are numbered 1, 2, 3 ... n*n, as shown below:

Prince stands in square 1, make p jumps and finally reach square n*n. He enters a square at most once. So if we use xp to denote the p-th square he enters, then x1, x2, ... xp+1 are all different. Note that x1 = 1 and xp+1 = n*n. Princess does the similar thing - stands in square 1, make q jumps and finally reach square n*n. We use y1, y2 , ... yq+1 to denote the sequence, and all q+1 numbers are different.

Figure 2 belows show a 3x3 square, a possible route for Prince and a different route for Princess.

The Prince moves along the sequence: 1 --> 7 --> 5 --> 4 --> 8 --> 3 --> 9 (Black arrows), while the Princess moves along this sequence: 1 --> 4 --> 3 --> 5 --> 6 --> 2 --> 8 --> 9 (White arrow).

The King -- their father, has just come. "Why move separately? You are brother and sister!" said the King, "Ignore some jumps and make sure that you're always together."

For example, if the Prince ignores his 2nd, 3rd, 6th jump, he'll follow the route: 1 --> 4 --> 8 --> 9. If the Princess ignores her 3rd, 4th, 5th, 6th jump, she'll follow the same route: 1 --> 4 --> 8 --> 9, (The common route is shown in figure 3) thus satisfies the King, shown above. The King wants to know the longest route they can move together, could you tell him?

Input

The first line of the input contains a single integer t(1 <= t <= 10), the number of test cases followed. For each case, the first line contains three integers n, p, q(2 <= n <= 250, 1 <= p, q < n*n). The second line contains p+1 different integers in the range [1..n*n], the sequence of the Prince. The third line contains q+1 different integers in the range [1..n*n], the sequence of the Princess.

Output

For each test case, print the case number and the length of longest route. Look at the output for sample input for details.

 

Sample Input         Output for Sample Input

1

3 6 7

1 7 5 4 8 3 9

1 4 3 5 6 2 8 9

Case 1: 4


解题思路:由于跪在校赛的LCS nlogn算法,所以回来恶补,特意找了一道相同意思的题目。如同此题,简单的LCS类型,但是10^5左右的数据量,如果开滚动dp的话,复杂度O(n^2)会超时。所以应该将LCS问题转化成下标对应的LIS问题,然后再使用LIS的nlogn算法,具体思想是维护一个递增序列,二分找上界,替换元素即可。(感谢DIM神给我讲解此算法)。这样已经足够了。但是说句与此题无关的话,如果数据范围过大,例如到64位级别的数字时,可以使用离散化,继续降低复杂度。膜拜下yeahpeng酱。

 #include <iostream>
#include <cstring>
#include <cstdio>
#include <cstdlib>
#include <cctype>
#include <algorithm>
#include <numeric>
#include <map>
#include <vector>
using namespace std; const int N = * ;
map<int, int> check;
vector<int> Stack; int main () {
int T, n, p, q, cur = ;
int s1[N], s2[N];
scanf("%d", &T);
while (T --) {
Stack.clear();
check.clear();
scanf("%d%d%d", &n, &p, &q);
for (int i = ; i <= p; ++ i) {
scanf("%d", &s1[i]);
check[s1[i] ] = i + ;
} map<int, int> :: iterator it; for (int i = ; i <= q; ++ i) {
scanf("%d", &s2[i]);
if (check.find(s2[i]) != check.end()) {
s2[i] = check[s2[i]];
} else {
s2[i] = ;
}
}
/*
for (int i = 0 ; i <= p; ++ i) {
cout << check[s1[i] ] << " ";
}
cout << endl;
*//*
for (int i = 0 ; i <= q; ++ i) {
cout << s2[i] << " ";
}
cout << endl;
*/
for (int i = ; i <= q; ++ i) {
if (Stack.empty() || s2[i] > Stack[Stack.size() - ]) {
Stack.push_back(s2[i]);
} else {
vector<int> :: iterator it = lower_bound(Stack.begin(), Stack.end(), s2[i]);
*it = s2[i];
}
}
/*for (int i = 0; i < Stack.size(); ++ i ) {
cout << Stack[i] << " ";
}
cout << endl;*/
printf("Case %d: ", ++ cur);
cout << Stack.size() << endl; }
return ;
}
												

UVa10653.Prince and Princess的更多相关文章

  1. 强连通+二分匹配(hdu4685 Prince and Princess)

    Prince and Princess Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Othe ...

  2. 10635 - Prince and Princess

    Problem D Prince and Princess Input: Standard Input Output: Standard Output Time Limit: 3 Seconds In ...

  3. uva 10635 - Prince and Princess(LCS)

    题目连接:10635 - Prince and Princess 题目大意:给出n, m, k,求两个长度分别为m + 1 和 k + 1且由1~n * n组成的序列的最长公共子序列长的. 解题思路: ...

  4. Prince and Princess HDU - 4685(匹配 + 强连通)

    Prince and Princess Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Othe ...

  5. UVA - 10635 Prince and Princess LCS转LIS

    题目链接: http://bak.vjudge.net/problem/UVA-10635 Prince and Princess Time Limit: 3000MS 题意 给你两个数组,求他们的最 ...

  6. HDU 4685 Prince and Princess 二分图匹配+tarjan

    Prince and Princess 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=4685 Description There are n pri ...

  7. HDU 4685 Prince and Princess (2013多校8 1010题 二分匹配+强连通)

    Prince and Princess Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Othe ...

  8. HDU4685:Prince and Princess(二分图匹配+tarjan)

    Prince and Princess Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Othe ...

  9. Prince and princess——需要优化的DP

    一个时间效率为o(nlogn)的算法求公共子序列的应用 Prince and princess 题目大意(已翻译 ) 在nxn的棋盘上,王子和公主玩游戏.棋盘上的正方形编号为1.2.3 ... n * ...

随机推荐

  1. centerOS安装rkhunter

    rkhunter是专业检测系统是否感染rootkit的一个工具: rkhunter-1.4.2.tar.gz 解压后直接安装: #./installer.sh --layout defualt --i ...

  2. WPF - XAML如何引入名字空间

    WPF 的XAML引入名字空间的概念,经常容易让人混淆.如何引入名字空间,并且在XAML中调用其中的类,下面给一个简单的介绍. 比如我们有一个Hepler类. namespace Wheat.PIMS ...

  3. 必看谷歌HTML/CSS规范

    背景 这篇文章定义了 HTML 和 CSS 的格式和代码规范,旨在提高代码质量和协作效率. 通用样式规范 协议 省略图片.样式.脚本以及其他媒体文件 URL 的协议部分( http:,https: ) ...

  4. unbantu相关笔记

    很多项目使用的系统是centos或者redhat,最近有一个项目使用的系统竟然是阿里云unbantu,不知道他们负责人怎么想的,明明有centos,非要用unbantu.抱怨到此,unbantu的学习 ...

  5. nagios和zabbix自定义监控脚本

    一. 自定义nagios监控脚本1. 在客户端上创建脚本/usr/local/nagios/libexec/check_disk.shvim  /usr/local/nagios/libexec/ch ...

  6. .NET基础拾遗(4)委托和事件1

    一.委托初窥:一个拥有方法的对象 (1)本质:持有一个或多个方法的对象:委托和典型的对象不同,执行委托实际上是执行它所“持有”的方法. (2)如何使用委托? ①声明委托类型(delegate关键字) ...

  7. JS--显示类型转换Number—隐式类型转换

    显示类型转换 (强制类型转换):Number()parseInt()parseFloat() Number是整体转换--能够把一个看起来像数字的字符串转成数字--尽量去转换能转的都转了 var a = ...

  8. 《第一行代码》学习笔记10-活动Activity(8)

    1.除了onRestart()方法,其他都是两两相对的.三种生存期: (1)完整生存期:onCreate()~onDestroy().一般情况下,一个活动会在onCreate()中完成各种初始化操作, ...

  9. Windows下使用ODBC API访问数据库之关键

    本文采用SQL2005 + VS2008环境,以ODBC API方式成功连接数据库. 1.SQL安装和环境配置 这部分网上随便搜一下都有很多资料,而且很容易就可以配置成功. 注意的关键点: SA账号配 ...

  10. oracle中简单查询语句的格式及执行顺序分析

    一条简单的查询sql格式如下: SELECT ... FROM .... [WHERE ...] --过滤单行 [GROUP BY ...   [HAVING ...]]--GROUP BY对前面wh ...