题目

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAmAAAAFUCAYAAACDaID2AAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAD1iSURBVHhe7d0/kizJcefxensWQoHtCYgTgFAgQV0NIwIKtTXrbTNqVDgieARKUIY4AXkCGgVw7jLbPtO/GR+He/zJjIyqrv5+zMIq45+7Z1a/rkD3w7wv3725AQAAYJv/9f4KAACATTiAAQAAbMYBDAAAYDMOYAAAAJtxAAMAANiMAxgAAMBmHMAAAAA24wAGAACwGQcwAACAzTiAAQAAbMYBDAAAYDMOYAt9+fLl/eoY238mxpG9K2reoXo22fjKmo7EWpF/JIat6bVMHK/WjRjd69eN1iXZ+GheM7M2c3b/jNlcR57NzvuR3TnvcY8jqrpsfGXNvVizuVp1+9eW2ZzG9szsy9aO7j9S31n8Y9wL2Ruox9l7M7N1/q2o9o/Gj1pvs687E3PFOlt7z/B5Y06pcquuWHtGMUbWeq37Vv6WmM+vH91/pIY4nvVNa43XmpORnDPxR3J6vfU2743WdoWZfNnakXu95/1YP7Oypp33OHM/vi6/b3Wtrfuv6jWtPSP307uP0TXSWxtl8UdymrjO1+HN1tTCAWyh1htdzc2M+7HqWqqxWRYjy9WKFfMeld2DqcY9X6df2+pX11KNzWrla8U7kjvuMT6viXGyPSbuk2rcG1mTaeWMbF023qN9yqPrVqyspllHaxVfs5fFjftGrLrHFXFm7bxHGbnXbE0cq2rXmmy+F1Nmx42fi+ta+87KcmV69YzsM1m+3pqznvYA5h969hBlxe37eJLlzHLNjPsxXdurxL5k8U2WI5PljddXqOLP5LW1PfF+/J7Ylyr/bG0xd7xu6a2L89aPbL6Kk+3X+h7ti2t7+2O+SPv9OpONmWo88uuq69VmY8e6IpvLYsZ9MznPeIS8O1V5e88hjo2s8TRnrxntq2K0Yhs/H9fGnK25lpG6Yt/01mR7jMbtNaO5uLeKd9RTHsDiQ/L91txZrVjV3My4H6uujfUliy1ZjozWZXmy8VUsbjSbr6pZfL+6NtYXPx7FfS1am+XKxiOb78n2V/miXv6otf5IjjhnfTMTpxXf07osZza+wmxsvy7usb7J4sQ8WtuSxTkj1nuVe9+jp/j+3nv1aS7Wlo3JyHr17XWE9sb12XjMPSOrM6PaYy6NxX3VemnFkpE1Z/GX8B+Avam+zdB6/6ovEHs9EnOEz3Mly6Hm6b58i+MSx2I/8uv0qvz22tp7ls/Vo+fSaiNsne7Jt0c0ek8r2DO4Mt9s7N76mXm7Vl/Xfmwl/xz911fWzvL1+/vRtR9byWqfiR/Xju4z/jkpb49fo1wa832NSW/8jKx2xdW4v26Je/zryNdVtcbGfVvtKQ9grTfMvynWWmuPmn2jrAbfRvn67TW7n15MPYfYMsohfq2u/fyV/H1V10b9VvOsfo3Zq+9Lts/zz8K3ivKIX6/rbH6mZfy47ik2U8XxfbvW+kjr/Kta1h8xuzZrGbsHP+fX6trPX+1Ivpn18X4zqmGmib82+rpSi2NXsLixjsjXPtpWOBKnup9VNWUsduv9sXm1ESPxVhl5/yWus72+rfb0fwl/5I1e9Qj05mXxqjwz435M1/bak8U3o7mzvF4V56yqjl49Jq6pVPF7spxmpB7xY735EaPrbZ3xuTMj9Wisldvni+tG9nnV3irO6HgvVhVnhawWqXL6NRJjqK/rbE9PlX+Ez1vFac0dsfseTXafI9fG+lKtMbNj2Zyx8RF+b5XHy3JVqto8H19rqzr8WC+25v26OJatkWzsjKf+FeTqh1WxPNbMjnyR5VTL+o/AP6MZ2ndkr+efycizieti/xHMPhP/HON9+PubuUdbazGrPXFuJrax9WrPTO+NntfIPY+uE7/W743Nz59xdv8R2T1kzc+f4b++7dW/hz3Z3llH9lgutdjXmCi+vaoZv1avI7XYmpgj8mvsdSTuiJHcxq+xPb6t9rQHsOphX/EQLc/IG9tz9E3WPu2N/YzNrah5hHJZa9WU0T61o/Q8fGuJ62I/Y3NnalzB1xlrPfsMM7rnmEtiPl+b9mRjI3r3YrFW32/P7D2I1am2QhUnPpMjte50pL6d9xif85n3b2ZvvEc5kz9j8WLLVPV4I2syR/ZEVe5eTTbn22pPeQCLD9X6M2z97J4zlK96k3v1aJ/2xv4KvkbfV12+r7FHoFr8M1FrietifxU9L8VVX3X7vsZafJ0ztc7mMbZOOex1ZJ+vze+NY/ege1cN6uu+fF9ju1yVz+51973MWFHfznu0PPFrOPZNts6zed8qR+4txvV9jY1Sft1Ltd+vaemts3nfMn5c66qYIzVd6al/Aqbm2QP3c/d+A4zV0KpD89Uafz9ZP7LxVr5MzK++xnxfY2J91RPnruTzKb9vLXFd7Ec2fuTebI/fp77GfF9jV5jNk92v9avns9uR9yPeu/oa832NRdX4I7Fn41scU/+RzNbj70d7s/5KFm/0/e+t09eYmjeTx9O+GDcby9j++MwUM46L9rTier11qlFNfB4/HvuP5mn/X5CxedW4tOZWO5vH1xqv9er/cMz8YVjJ13bG0T/Myu9bxc/Ha73e+5kqp6/jSjFfdb+rn4PlUxulWu9hZ+4jz8Zq6zWtexSztfh7qZrWrbLyfc/iaCzLs/I+Iv81Znl8Hb4We7W+5/do/RnK5fn82fxZqntF/Zmn/kv4u7TenCveOIvnv6jVF80ZvZq4Lspi3UtWx0xtI/fpfXn9Ibbm1P/R//thn/n+9a2v6+/3va331Fc8rZdqvbT6Pt6PNYd81v/xOvS/X5fE9+t9vdbXs/jZM2q0VSyfWkb5NO+vM3H9Skfj2h7VVbWM7VPLaO9oTbPrz1CuUatquuIeR+LN3m/laJ6qRj+W7bV5Na8ak5hP65UjazsoV6y9orrVlnsLCuDN26GD18YrAGAd/jFuwLGfBH334v6XHP2f9QEAa3AAAwAA2Iy/AwYAALAZBzAAAIDNOIABAABsxgEMAABgMw5gAAAAm3EAAwAA2IwDGAAAwGYcwBap/imFK/+JhZHY2Zora7rabO1H7vXs89lRIwDgY+M/xLpI/BDVY80+XFc9cottsVo5tMbLxq6Q1VXx9cR9ca6qfSafaT2D3jM6WqP4NSPrAQDPhQPYAvoAjR+kV37ItnJ52Xi2N7Oy3hm+vuw61i/VPqnGZsUadN2KFfMavy+bBwA8L34FeZL/8PQfwvFD1c/tEHNZX833xerz7ZH1nqW/R71m1ya77zgWW0Vzcb3Go2ocAPD8OICdFD9EWx+qqz5w/QHCi4cLz3Irv79+ZHYvqtNfG7tu3Wv2KrF/RqxLqtpsPLZq3FrP6+vr+xUA4CPhALZI9sGZjZ1lceIHvsZWHiweSXbPxsay56ox/6r92pPtO8vnqdh8bK1xAMBz4gC2SPbhmY2dtSrOEVcdXCp2r/5Q43PrOj4Pvz7uF+vHMc/2ZC2jHOLX6trPRzbXqiXiJ14A8Bw4gJ3kP2R9683dg+We+bBfId571lbyByL/ml1XLEZsI+L62O/p1cXhCwCeB/8vyIvZh2rvEeuDd+atUNzRV7+ndS3Z2C5na45zvb5XzbViZHtaObzRuNXh6+Xl5f0KAPCRcABbwD4oR8XHXX3g9mRrs1hxXTYe15hsbJeqttGa7bUn7jVZTIlzvp/ta8WS3r44r0MYhy4A+Pj4FeQC9iFZtTi/S5XLxkcOBxnbZ20H5Tr6zGyfWtZfIdaovrXY11hPqz4OXgDwPPgJ2EL2IRsfZzYW6cN55q2Icas81To/bteZGE/rsjwrxZpNHGutUZ0tvfjRSH7v7LwZWQMA+Jj4CdhC9mFpH5qzbN+ZD9rRD2q/LtaqGtQyrblH4uuM13r19z76/FYZybe7JgDAXvwE7CLxcLOaPqCrD+qYf/cHus8/SvXFWrPaqzU+b7bH0/q4ztOeLFZvXzZ/NB8A4LlwAAMAANiMX0ECAABsxgEMAABgMw5gAAAAm3EAAwAA2IwDGAAAwGYcwAAAADbjAAYAALAZBzAAAIDNOIABAABsxgEMAABgMw5gAAAAm/FvQeLT0z+ALSv/SPT+8e1ZV9YKANiHn4DhU9MBybd4yDnCYqyI48Vae15fX9+vAACPhgMYcIHRQ9IoHb68lfEBAHtxAMOnZocY/5Oq7KDzSKw+tYifeAHAx8EBDHhTHWoeidVnh0M1Xy+HLwD4WPhL+PjUdKjxsrGjVsVq1Vkdvl5eXt6vAACPhgMYPrVnOIAZHcI4dAHAx8CvIIEnwMELAD4WfgKGT89+kuSt+olVdDbuFXUCAO6DAxgAAMBm/AoSn9qX15//VOnqPgAAhgMYPrXvXr778ZBkr1f3AQAw/AoSeKPDklzdBwB8bhzAAAAANuNXkAAAAJtxAAMAANiMAxgAAMBmHMAAAAA24wAGAACwGQcwAACAzTiAAQAAbMYBDAAAYDMOYAAAAJtxAAMAANiMf4oIePPly0//UPaKPxI+npyNe0VMAMB98BMwfHp2sLGDjFp20DnCx7S2wky819fX9ysAwKPhAAZ8QDo0AgA+Jg5g+PR0kLFDzcqDjeJZW6FXFz/xAoCPgwMY8M4OONZWHphWxzQWy2J6HL4A4GPhL+EDQXbAOWtlzBirOny9vLy8XwEAHg0HMHx68UCz4rB0RUzJYukQxqELAD4GfgUJPAEOXgDwsfATMOCN/VRJVv6kSlb+MVv50zQAwH1wAAMAANiMX0HiU/vy+vP/d+LVfQAADAcwfGrfvXz34yHJXq/uAwBg+BUk8EaHJbm6DwD43DiAAQAAbMavIAEAADbjAAYAALAZBzAAAIDNOIABAABsxgEMAABgMw5gAAAAm3EAAwAA2IwDGAAAwGYcwAAAADbjAAY4X77w7zUCAK7HAQy4gB3kfFvlipgAgP04gAHvVh1qLI79E6u+rYgd456J+fr6+n4FALgHDmDAGx1uAADYgQMYPr2Pcvg6UyM/8QKAx8IBDLjYil8/RjOHRg5fAPB4vrx9E+f3Lvi04kFm1U/D/KHL4q2Ka1Ycvl5eXt6vAAD3wAEMn54/LMnqPxYrD3azcXQI49AFAI+DX0Hi07MDjZr6Z8QD3VWHr5inwsELAB4PPwED3vkDzZk/FvFgtOqPWHbg4o8vAHxMHMAAAAA241eQ+NS+vIZfF17cBwDAcADDp/bdy3c/HpLs9eo+AACGX0ECb3RYkqv7AIDPjQMYAADAZvwKEgAAYDMOYAAAAJtxAAMAANiMAxgAAMBmHMAAAAA24wAGAACwGQcwPKC/3L768uX7f/vwV19/+z4GAMDzeKoDmH1gz7aW3ryMrquM1NJyNv8qq+r49uu/3n773Xe3777799v//uM/vx3H/laWayb/irUab8Xq7c1kc631Pdp7dc4jNR7Z453dDwD38tT/IVb75uxvL/Z7/PrW3riuJVvn41b7q9ymVdtZrfuJOa+o4y9f/er213/8j9sf/u594F2WazT/bJ3Vej9+5jrK5lrre0byzua0uRmt2lt5TMzl1/b2AsCj4leQg+yb/MiHjq3zLY552Zjx67P5nWIdsT/mp18pfvnV17ef/1Lx29vXv/rpJ5Jfvgo/7/rl726/GTh8yY9x3pvEMd+PLdOb9/XYdVxn/bln9rd8DWqzshoszuzzNLZH+3RdjZkYS603Z3wc4+f9eo0BwKN7up+AzXwD9h8Ms2xvti8+TluTPeKZcT+W5axk8XtG6hq5Tv3lq9uXf/iv27/8z9/+RCv9Sdfb+q9uf7r96dfv/TeWI7KcWe6p2t6NxGmxda01VZxqn8a1z/PjrZyZ1r4qZ8yndRL7EuNIliOT5Y3XAPDRPOVPwOybsr4x6zr2Pb/Gt9G5eH015fI5s7EZ9mFmLRM/6Oy6Wtvy7V9vt7//+/+8/fGf49/q+svtz/8VftJlh7U///Znhy+J93nlB7Fi+/v1uXWdjXl+TDHV96/xeubetCe2bM6L47M5s1cZjTOiqsu/N1d6fX19vwKA8/gV5LvRb+Irv9lbLN/uyT7YWh9u52v99vbN7be3//i/v7/d/vXPP/+L9XYy+91vbjp/ffv1r25f/uFf39b9w/e54m8lo9EP+XgPWatYDptXLl1Xe/za1roexTBHY3gjMXzOHsXzr/G+R3LO8nkA4CN6ygOY/6av69iP9GHRYvOtb/q9/ZHF8u0RxfoO1/rtN7f/vv3idvv1b2+/v/3r7Z/cf17i22/++/ZL9+Ovv/vDf/wsb/ZTsEzv+fuYVfP0fs++r9nXieL0Ymq8mm9RfLWzejFsXvepe8ruO455qjW2jHKIX6trP38WP/ECcKWnO4DpG77/xh/H1Fr8N3a9tvb05p/N7L3+dMj69e23v7/d/vPfvnn/y/jf3r7571/+zV+0b7FnreZZTXHsDN2j4qrvr7Oc2Tpj177fEuPGWBnFH80hFlvNizVEft6/ZtcVX7PaiLg+9s/i8AXgak/1l/B73+wz2e1bHBuPr5HPVz3G1t7RcT/mc/ZUNbXE/K18ti7Wluf89vb1V9/cfvOnP/zwa8Zvv7796hf/dvud/WX829e3r775ze1P8W/lF7L6qn68HhXvoYrpjeTy+7Q+i+3HpLU+XptsLq4xrX0mi+OvZ/ZH1VwrRranlUNsjemtM9Xh6+Xl5f0KAM77VP8dMNP7Zu3nq+voyFyMbayfrY9rW/OSjY1o7evlqff+5fb117+4/eHHQ5b9pyd+cfvj//732//88s+3b37zp7/5f0VWYo7RelvrvFb8XoyZvepnMbO1Udyb7YlzcY1p7YuqmD1ZvNE8JsvrtWKZ3v6MDmEcugBc5Wn/Er59o41mvlFHNp7FPMPiKWeWV/OPrPU8f/SXv95+/jvGv7v94fu/jP9Pt/8z+evHnfTeSO9e/XzvfbO1MX7F1vg2y/b4XKu/pmJtsb+C1RzvQS32NXYGBy8AV3vaA5g+APw35eoDoTcvPt4KqrGi+daaVfx9te5Rc9X83/r29vWfw/nLfP+X8f/zdvvlT//vx0djz93fZ3VtYl/vm41bW/ketmJl+dS31ysop+LHfmTjs8/D1vs96mvM9zUm1lc9ca6FQxiAKz31T8D0DVdNY9Y8zY+YWduyIsZKui/fTHxmcb7J/lteX35x++O//vH2iy9fhX/T8de3f/yX399+d+DHX7GmUX5f1VrsnrXGX5vYN9VaY/1s/CyLaU2Ux1T5bExtls8Xr/Xq49q15nbytQHAI3jav4Tfu63WB8FonNa6mVq8Vl3Gx+2ZyXvG0Xs9Ij6f7Hmpnt66jF9Xxa7m1bdXU+2t9knsRzF+tX5kPK7J9tiYiXs0bqo9ovVxnRfzyMi+1jwAPKKn/kv4AAAAj+hpfwUJAADwqDiAAQAAbMYBDAAAYDMOYAAAAJtxAAMAANiMAxgAAMBmHMAAAAA24wAGAACwGQcwAACAzZ7yABb/GZSP4kjdZ+91R86VOXqxsvmze3r7e47UVDka6+w9AADWesp/isg+bPxtVR8+8dZHPqRWPa7ZD8RW3ni/UcwVn83sPc3s6d1nVcvIdSabP7unms9keXrxTRbvaKzMyBrJaukZjQ0A+MGnOYDF25z5QLqCzz9an43NshhZrlYsn3cmZ1VvHDe+Js/X51+l2mdaMaNeTD92JKfXi296fePH7LoS95ksfibba7J6AADHPdUBLPtQsdub/bDZQR9ovraq1qpOxejx66rrSrZmZKyVJ9tvbLziY3nVuLG5LJfGslh+LItdxYr8eLyObC7G6fW9GN9fZ2w+izeaAwBw3lP9HTD7gNCHhL826sfxe1Mt8VVW1lp9iFYf1Gf4PHZtOdSqe7LxOOfHtFf9aq3GW7mMX+tfsz3VuPH31uPjZDGzGP4+fC41P65r08v16F5fX9+vAOD5fJr/F6Q+oPwHlcS5kbaKYvlX/6G5Op/4PFdS/ToA9O7J16W1RynOVeJ9XSXG9jk1F6+vdOY9AQD84KkPYPqg0IdTbJLNWevNeZZr9oNJH+DGXn1fqnyivLFllEP8Wl37+aN8rKx+jfl1Rus9v07Xs2b2KFdUjc9QDMWZjWlr9Xy0V/v99dVG3ocj9fATLwCfydMewOybv//wrlqUjZlq/Az/QeZfs+uKxYhtRFwf+2eMxorr9Gr37Pf6NS16XvGZ2d7ec9R8lSuO2/qRuJ5iKI6/7snuKYulvqjO1SzmzL33cPgC8Nk87V/Cr26r94Hk5+Pa3t4ZitXL0cpZzbViZHt6OUZlcXtinZm4xvqx5pm+jyF+rcnWS9Y31Zq43lQx42s2p7GK1pgsTryWbExm18+oDl8vLy/vVwDwfD7df4Zi5kMmW9vaP0Nx7LUny9eqI875frZvJpY5M+ZV8348rlG/GpfY91pr7VpaY1EvZjYXx002JtVca4/J8mV7WnF6Oc7SIYxDF4DP4tP8JXzPPkyseaMfMLYm7jVZzFEWUy3rr6D6FFN91ez7GjOjNayq1efOWB5bs/LZeBY3i12Nm6yeaq1na/z9Kk7vGdi8b9WYKOZITatkdbRw8ALw2fATsDfZmJkZtzGTrc8ohva1ZLlaeeL87Pqe0fVn8tqcyeazfXGsF7u31o/NxMq0YmVzVczZccni2nWmitPLESn+zB4A+Eye/idg/sOnMvshka23sSMfNn5fvNarr332g/DerN6qVTQX791YPxs3Nqa2g2oZla1XP5tbcR8+rr36mNb3baUrYgLAM3mqA5h9uPgPmOrDR+v8Wq81t4LFVj1q/sMq1ipxXZTFujerpWqRr1/z9mpjxt+bHxft05rIx/f9I3ycSozfqsvP2fXRurysRvWzWrIxAMA1nvJXkAAAAI/sU/4lfAAAgHviAAYAALAZBzAAAIDNOIABAABsxgEMAABgMw5gAAAAm3EAAwAA2IwDGAAAwGYcwAAAADbjAOb0/vmXFf88TBRjXpHjSlW9M/exYu2Vz21F7NEYV97HGY9aFwB8VPxTRO/sA2bkUYyuGxXjZR90R+qarVN5tSf2W7JcM/ln13qxXm80ZkusLctjerlm79HWVrnk7P3N3MtM/QCAPg5g77IPmNGxWT5GdW1Gcx3d59ke42sxs3GkqkFxZ/ia7DrG9v0q7xFHY9m+UVn8kby773NlPgDA2/fVt2+qn/67avbhYmMmezwrPowUo/faE9f19rXmZ2LZXEbrs/ksViuHV9WW7R+N2eJjzMYbrSmOzeSZramliuXHV+YDAPB3wEq7P2yUz15nP+xsvRf7xsaycYk5Yz+yOc3rWn3t9WN69bIcVY1xXStuNjZrRYwz7Dlk7So7cmReX1/frwDgc+EAdifVB7x9AGpu5YehxRzJaWJ/hvaurF0s5khbyeLpWcQ8sa1meX27gtV9dQ4AwN/iAPZA9GE4I35wHvkgjetn9/tDyOheWztL9+ZbHI98baNN/LXxeZQr9neLtY+0VY7E4ydeAPADDmB35D+8dK0Ptdh/ZLMHELsfv173qPuMffHjfj72PdU204zF0vW9+PvK7s3E2kea6B6r2Ktx+AKAn/CX8N/ogyiaHZ/hP/yqWCvyRKtj+njZdcxXrZdsTGbXrzBbj7HxUX6/j5fF7s3PiPutb+LYqnzV4evl5eX9CgA+Fw5gb6oPl9nxUdUHW4x7Nk9mdczevbTyZXO99aOqGLNm6zej9xXHfL+3Pps/60g9ZrQOHcI4dAEAv4L8nn2A6MOkJ/sgmlXtn6nj0elezj4rz2Kpqa/XOHdPozX01tnz8+1K2Xu1+lly8AKAn/ATsHfZB1BmdN2oVryVuSxWdDZ2rM/3dd26h2yutd7YvIl5vF6MGa1YM3lG1q6ON+pMbSvrAIDPhJ+AvbMPEfswafnIHzZWd2xX8c/JXlvP1eZ86421avdrMObM8+JZA8Bx/ATszrIPMRuTR317fN2q1/rVh3J1n2fvb0WMlqpuGc09UufoGjl732fyjewFANQ4gAEAAGzGryABAAA24wAGAACwGQcwAACAzTiAAQAAbMYBDAAAYDMOYAAAAJtxAAMAANiMAxgAAMBmHMAAAAA24wAW+H96JdObPyKLeUWelay+0RZlY6Yar8yub1kZa4Wz9czsP5Kr2tOLFedX5o6O1rhDVsOVdbViz+St1l5R+5XPY8TO5zJ7r2fyZWuO7jtiRa5VtVSuji8cwBx76L1/mcnmd705M2JNszXaer8n9iN7DnpWuvbNj9+L7iFrj+gedSmnfza+ebEv1fgI+/po7T8Tu9LKaeOzTbI5a0f1YmXzalfpvV+fSfUcdjyf3e+D5fLfy62fNS/2Z/T+jPpaPjL+LUgnvrH+CyCOr3xsWbyZHFnds/XZHqN9sV+pcrVqyOZa643qGTFbj+nNR6vjifYd3S8j+22NydZV+2N9cV21T3rzmdkc4tfZdcvKmkfWZ2vi2GxfWrHtdVaWI6pqOWO01tV5jX9erfhxXVyf7bexWa0avCyfV81nNWldL2allauKl9XRc6S2FtV39L5ncAB7Fx/2bP+MLNZo/Jm6bE6yNTOxpFqTjfv8ojV+/Uhec2TdyPWoas+RWNFsjLi+t9/Pj+618YqP5WVxW3FMzB3r6dWR1RBjeK0505uPqvV+PF5HNhfj9PqicT/fW9tj6zI+fjQStzJa1xVi7qqW6pmY6rlUcUbvtcpZ5TO9uSy/xvxctq6lWh/HZ+NeaXdt/AryCdgXiRf7Rl9Iatmeq7/wFE81SMxl17E+Y2O+VWOejY3EPiKLFfONsD2xVePWVsieiVpVv43HOT+mverHtaI1fl0c8/yYzxGb+L4fF4txNT3LkVyx3ljzSIwj92R7sueTyWpUX3H8mF6PUDx77bXVLGasXbVENp6t1ZhiqR/XmixfS4zn+z6fxvQqcb6XvzW3QpbfxrIWZWNnWLxYi/VX5/E4gBWu/sJ7JPELL/tCvIq+uO3VN41FVlfVIh/Ht5Usr8+T1dHj70GtNT7K37NqjDTnc/TWqw6tHTG67ihfV+boXNS7D9Wh9lFY3VnrsTV2nyNrR/nn5p+jrv3YSroX8fdk49k9+j3VmlG2N2sjbN2R/P5+WxRf163m9eaq/Dbum8QYq8RafB4bvyovB7ABrS+Ue4tfoLEvrfrjXGutseehFvvVeEX1Zi3jY8YWxVituJ6PV8X2LKatacWeidmLNUr3qybKrzx+zmjMrzNa7/l1uo6yfSbbk+2XGMevzeJ7tlYt9jU2orrHo2IN/vpKMYfdl28ay6hGa9WajPYcYXl6exV/pvl9vXtRDX5f3OPX9GqOc7beN41VlEe5zlhRp++LH/dzK2r29Bxmmt/Xq8Xm/b5VOIB1jLw5Zyi+f2OzsZXO3pPtVYv9atzM5s3W+pixjeqt1bzqtdZ6L7SutWY2poysmaX8qqkS1+lV9yB+TSaby+4rxhWtbeWo+L3ar2vfn2HrW/VncxXVoRr89VVUZ6U3f3WNll/PUNe9vlFdM83vGxH3Gcvv9/s1lbgn6s2bkTyRnpc1z+LEMTNSxxG9mL7OrK5Iz2Km+X0jZtaO4gDWcNUXX8byjHyhnbXznqLqHm0sa5lsnVoU52K/Z+Q5WSytG3kPZ5/9SMyj9CxazfNj1ZoRtsc/B93j7LOp+LpWxezx9et+Vt7TKlfX1Ipv4yO5/TpdZ83P34PeY3+tfoutubrmKoee12j+q+us+DrvVcMOHMAKO/6Q7PYI92T5rY5Yi137VonrfIviXOyflT1P69v4UbvfIz2PrEV+vFrTM3t/1XqNZ8+6qi2una3Fi/t6/Z7sfs7GzGQxLKdvceweLK+v9V51tFh9qtFf92Tr/PPWvcb+1UbrxzocwN7ZF1/8Qvd/APycXa/4Yo1xVIPGspqOirlWxI0xRx3ZI5azarPO1lHtt/Ej9VTO1Lla7750761nk1n9zDKWQ3laNa6QxR/Jp/pEcfyYKF5co3G99tg63+LYCFunOio2n93HCMV/NL2aRp6LsXnf4tgoWzuSb7fZ987W+/asOIAV/Be/2kf3KF/Qlt+e55E64nviW8/o/Wu+ejW9fHF+JKZdj9zHPelZW62r6tUzUFyp4vvxuGfU0X0jqrors+u9Fc9iVKtOza3Mb7F8i2Pq35Pds+7bWvV8Vmrl0dy9n4s38lxivbbeN+nF+Wg4gDn25va+cEe+mEZkcbKxkZpGWJzYzjj6HKp9Nu7bCjHe6L3HdbF/RIwR+1ajrisja2b5ZxRbRXNWS1xn/Wy8ovXS2xvXm6P5ZvaNyuprqe7HZHO+3mqvX7ODr6OV3+ZivRWtbTWtuzfdr9US713PpnomKymXqXLamNoOvib8Lf5L+A+i94X6SF/II7Vka6p9vbV2PatXn/jYo3tWq56LqMbsGc3yMUbyxvUmq8PGsvUz/Z7ees3bq2i9xrL9o3F7RtZltWWyWNpr461cfq6VL8YYXat11o8xpBpfwee/Uu8eqjq0L+7P4mVrJK41fr3WWj+LbeJ6vybb42N6rbUmzplsj/i9orV+X5ajl3eFVu0rcQADAADYjF9BAgAAbMYBDAAAYDMOYAAAAJtxAAMAANiMAxgAAMBmHMAAAAA24wAGAACwGQcwAACAzTiAAQAAbLb1AJb98wOmGpdsvrfHjKzJHK2zRXvPxFgtq+XovT/SfQEA8OguP4Ad/UA/y+L7f2XJ+lkTf+1V497IGrn6X37SfcXWUs339gEAgGMuP4DZgSN+kFt/9CDSWmtzvkm2x/pZE7v2MUwWJ+P32mvW/NyV/H3pWv2Kzce6rN/bBwAAjrn8H+NuHTiUOq6pxo3NZYcDjfm5bF0lyyU+nudjZ/m9Vi2tuaNG6tC1vVb8Wm9kXzaveKIaAAD4TLb8BCx+wPoxfQCrX63VeO8DuzXX4nOIHxupc5bFtHYVxe/l8Pclfsz2+75/jeO6lrhGRupa4fX19f0KAIDHseUv4esD3NjrmQ/e+EFe8Tn1YV81setVdWbxI8sxej8zdB8z8bXH2Gur7hVmagMA4Nls+Uv48YNWH/CaO/Jh39oT5/RhrxbHjGrxrG/jmmvljBQ7xpyJscvqe19F+WfwEy8AwEew5VeQRh/kYte+X9GHcPwgrg4FMc8o7Yn77XokXqzF+mo7qf6ZvGfv/VFw+AIAfBR3+0v4Pq0/NGTj0ur31nrZnI1lspjVfj+XvZq4z2jNWTFOltOv0bXWRdk+v1/iWLV2ZO9R1eHr5eXl/QoAgMdx+QFM/Adt9cFcjUvse2fWen6uilmN++vs1fh94vdHrX0jYmzfPzIXx83o2pG9ns2Zaj7SIYxDFwDg0W37S/gt2Yf1PayuM8bT/l2yWqvaV9/7PXDwAgB8FNt+Amb0IZ+lzD7c41jrAHBmbWTzJlvTy5PF9vH8vMa9uNdkMXtG9mRrVNNoHa0xxfK0tjXnZfEBAPjotvwEzOgDN/tg1ods9qFsY2o7KM9snRXtyfZp3LdI+2cc2WNUn+2NtSpmHO+xPWqeH8/mzdH7AADg0W37S/gxjf9A93O+35oTGzPZeLXWzMaJ8ar4s2taZtbKyB5bI7ZW/arWGLM1bmKcI2JsAACeydZfQQIAAGDjryABAADwAw5gAAAAm3EAAwAA2IwDGAAAwGYcwAAAADbjAAYAALAZBzAAAIDNOIABAABsxgEMAABgMw5gjv4pnUpv/ogjMW1Pr40YXbfKTL5qbS9GNj+Sd6Y272idcjTvbo9W50w9R9+jbH4k70xt3tE65WjenWKNM/fWa4/ikWrBY+MA9s7+0PT+VSabf5Q/XFaLWtb/iKpne/Uzj++99bMm/tqrxqPRdVfTfWWtkq3ttXuo8l5dj8X/jF9L0dG6bF+113+Piy1SnJm2gsXx9cQcalE2hufHvwX5zv4A6FFkfxj83MpHFuNVfxDjmpl+ZXTdCsrVyxnXxfWt/dWcjUda14rXon3xVXpxq307Vbmz8Vadu+9B+Xp547q4vrW/mrPxSOta8Vq0L75KL261715adWT35rX29fTu/ernczb+1fXh8XAAe9P7wo/zK/6gZSxmFjvL3zNS39n7GJXVn+Vt3ZfWxzXVuLG5LJfG/Fy2rpLlEh/Pq2LP5DWz61uqWBr38628K2vqibmq3DZe8ffkVePG5rJcGvNz2bpKlkt8PK+KPZP3KlUN2X3autZ6P967t968GVlzlI99Js+VNeLx8CvIjiv+QFg8xfTXM7QvxlH/UWTPz/o2HmX1+zHFUr9aq/Hee9eaa/E5xI9Vddp4bNW4NS8bW+nK2KtYjXqWYv2sdv/8xY8plvrVWo1nub3WXIvPIX6sqtPGY6vGrd1bvAddz8juS+3ejtzPI3l9fX2/wk4cwBrsD/ZH/4PVE7+RWVvFYvnn52PbeJbL76nWjBp973xOu241sevZOm1dbK1xrxp/NCPP4Qj/vI3PY+NZXr+nWjNq9Nn7nHbdamLXs3Xautha4zv4+xhl6/U8fIv8/VRtRpZjBYurWvz9ZC1je6s5PB8OYA2P/Ich/kGO/VH65uWb+Jijze/zsTI2H/fFPX6Nrme19sQ5y+FbHDOqxbO+jWuulVOyOB9dde96NjPN7+s9J//8TbbHr6nq7GntiXOWw7c4ZlSLZ30b11wrp2RxjlLueL2Sj2l1Z80o/0wbYfGztTHWSBN/bbL7if0VYh0j+InXY+AA1mF/UGa/uEdYzKN/CP0fYsXIxs6KMUea3zci7jPx2fg1LfpGFN8v2xvHTMwzSnvifrs+Es9k9X1U9gyy92C2+X0j4j5z9D2yfWqe7Y1jJuYZpT1xv10fiWey+mbEmqydjen5e7XrrInWqY6sH9soW+tzmRhrpBmLo+tHx+HrcfCX8N/EPzyz/SN8jOpaNGavs1p1Zrmu1MtX3Z/f459FNi6tfm+tl83ZWCaLORPb96t9rXizqny6ruajbK61foVefJvP+D2KEWPN9HtrvWzOxjJZzJnYvt/aV2nFq7TW2Jz04ma5I5uvxisjuc5qxRvNtbomrzp8vby8vF9hJw5gb+IX/Gz/KMXx8bLYVb64v1pXmV1/1mg+vy7uUb8al9j3zqz1/FwVs9qfjbfiSTVubM5U81GVT9fVfNSau8poztY9qF+NS+x7Z9Z6fq6KWe3PxlvxRsQ9ozF660bi9taoPxLL682v0Moxkv9IjbbHjO7TIYxD1/3xK8g39oWrL2Kjvpr/wo79M5TnSLxsn+J9ZL36zzyzla6oc/c9KZ/q1D1pfHc9q13xHl3hijo/0ntn9+ZbJpvXczH2+pHu+Z44eD0OfgL2bvQP8Mo/6IrlY9p1xueMNfT6ldF1q8zks7UmW5/FiWOtXGfWRjZvsjXV3l5ME9coj3c0tpflmY07m3OFmZy21ozeVxxr5TqzNrJ5k62p9vZimpE1nuowti/2e1r54ly2trXGrsWPxRiZ0XVntHL08p+pb8e9YT1+AvbOvnjti7hl5Re5jxVzW983sTUjNdi81n5Eqlv34en+s3uzMbUdlGemTo23ZGusH1s0Etur8sSaPzLdS3Zfuv/sfm1MbQflmalT4y0jayJbr5b1e2xdrPUoxbFXfy961diqfPfi723Wmb24L34Cdger/8D04h355nTFl8VonXGN9sX9vt+aExsz2Xi11szGifGq8aiKO6IXO2qt93OqyYys36WXU3XHNdoX9/t+a05szGTj1VozGyfGq8ajKu69qB4T7yfTu7fsGfTuOa6/QpZDdZnV+XfcE67DAQwAAGAzfgUJAACwGQcwAACAzTiAAQAAbMYBDAAAYDMOYAAAAJtxAAMAANiMAxgAAMBmHMAAAAA24wAGAACwGQcwx/+TEZne/FlXx49m8lVrjzyzVfc5E3s056rantXM8zn6XmTzq96XmdgzOY/Ut+qezjhaw4pnFmnvIzwXYAcOYO/sD33r3/AyNr/qm8NonHt+M6pyX1mTxc5aSzXf2yej6+5Jz2Gm3UOV98p6/D371lLN9/ZVRr83HI1/BavFf8+zftbEX3vVuDeyRvjX8fBZ8G9BvrNvEPFRjI4dFWP1+ispdi9HXBfXt/ZXczYexXWtuOLX6Dq+Si9ete+R7a519BnFdXF9a381Z+NRXNeKK36NruOrVPFsfEaMUeXb6WjuWHuM04rr9/RUMYBnwgHsTfZNY+QbyQo+VnW9Woxd5bLxiq/Tq8aNzWW5RseMH9e1vVb8Wi+Lbaq8j2hnrTFXlTs+Z0/r45pq3Nhclmt0zPhxXdtrxa/1YoyzZuNckXcmpq2t+Hiej61cVc5WLa054KPiV5Ad8RvKChZTzfdb16tYvPiNTN8UIxvP1mpMsdSv1mo8y91i69VafA7J8qrvx2Orxq19VnbvemZi/eyZ+Ocsfkyx1K/WajzL3WLr1Vp8Dsnyqh/XRr18vi61atyal42d0buXin8e4sesRt/P1s5afe+V19fX9ytgHw5gCX0juYq+SY20leJ9+W9sNp59o/N7qjWjRu9HOdVGHKnT51BrjT+yM+9Li3+uxuex8Syv31OtGTX67JVTbcTqOuN+31ddvrXGvWr8LH//dt1qYtfaY69+blYWP7rq3oFHwAHsA/HfsEab39f7RqZvqH5f3OPX6HrWkT0tq+rM4hyhvPH6StU9Kv9M8/t6z8M/Z5Pt8WuqOnuO7Gm5os6ZPVn+nWKdVotvccxkNVvfxjUX47Yodow5E8Mo/wx+4oVHwAEs0DeSR+S/YY02v29E3GfiM/FrWvSNMX5ztL1xTJSrms+oFu0Vu/b9GTP5o1iPtTPxRmV5lH+m+X0j4j5z9L2wfWqe7Y1jolzVfEa1aK/Yte+3zORrWRVnVLznUWefWbxP66vtxOELj4K/hP/Gf0NpfTPwa84+tplvOle9Rb37qGr0exQjxprpt2KYkX2ZbJ/fH8U532/ty7RirZLFvCKP14tv85nsWcRYM/1WDDOyL5Pt8/tNFi8zMzcSsxXviJn6jI1l/Drtq/b7uezVxH1Ga86qDl8vLy/vV8A+HMDetP5wZ3OrvhmMuDLXaGy/Lu5RvxqX2Pdm5nz/yFwcl2y8Fa8nrq/im5m43mxNK4zm9OviHvWrcYl9b2bO94/MtfaY2DfZmPTWV3t7MU01n+nFG5mL69Svxv119mr8PvH7o9a+jA5hHLpwb/wK8o3/w9/T+kbwjHrPRc/uimeSxa3yXFHnFff0GXzmr5mjduRYYfUzi/G0/0ocvPAo+AnYu9FvGjPfXFa4Mt9MbH1TzNZnceJYK9fI/ky1z2R7q5hHc1VUg7E9se/NxI3O7D3qyHPI1mdx4lgr18j+TLXPZHuP5GnN9/aauMb6URZjJLZ3pk7VNFJHr298PD+vcS/uNVlM4NHxE7B3+oPfsuoPucUZbY9AdWTPyPrVs7MxtRmKOUt5ZuocyTWyxrO1allfZuN+JHrOdn/VM4/jxsbUZijmLOWZrbPSqqM1J9ka68cWjcReRc/D8ulaVEccb9GebJ/GfYu0H/ho+AnYg7vym0svtr4ZxjXaF/f7fmtObMz01kXaZ2xtFscoVoxZjUdV3BV6uUesiDHr6DPTvrjf91tzYmOmty7SPmNrszhGsWLMbFwxerJ4kWK11lR6sSvZPn9P1Vw2bmMxXhV/dk3LzFrg0XAAAwAA2IxfQQIAAGzGAQwAAGAzDmAAAACbcQADAADYjAMYAADAZhzAAAAANuMABgAAsBkHMAAAgM04gAEAAGzGASywf9qipTd/xJGYtqfXMrPjld561TDTomxslZHYs/lXrD9SV2+PzY+2q8zGrtZfWaMox2iuHTV5M/mqtb0YNt9rmdnxFY7EvkedI2bz37veKNbzaPWN2lU3/xSRYw995HGMrht1JF7c0+tLK9dMHTNrvTM5rB/15iXmHKmjly8zEleytaN1zezzc3Fdb25UlVti7ExVS3V9ldl8O2ryevmq+qvrzNF5G/d8vqgVf1SsI8tjYq6ddY7WZOL99MyuP6Kq38TcsR7fH4nTWlO54v7jfVyFA5jT+2LxcysfW4yX5TZxzUxf/HiVR7L9UsVvmd0T18/2JRvXmL1GGq/26HqWj5fFN1U9Xq+2yM/Fda25UVnMWbGG+Cqxf4XZHDtqkuq5RHFdXD+yvyfuH8nVyzvjaKzddcpITF+bV+27os6oypGNxzHfH7nO9OZXU74deTmAvYsP++ovCtufsZhZ7Ky+ntb6Ko+05kxv3ozUKK1aTVZvry8a9/OtvVmc1voRMX5kc7N5szgS94yK+UdkdXu9eRm5n7jmaL2zVtzfWTFPlbd1f1of18Q4vXvq1aJ+FqcXO9PKNxOvipPFmIk7oornx7N6/FhLFnsFX4s3U2u1Ll5nevMrxVxX5+bvgN2Jval6Y/31DO2LcdT34rrIvtCuEPNm/ai3ZqTWM/dj+Wy/b8Zfx5p64nrdl8Yt7pGYVfOq+WpcdK9nxGcXm5fV4Mdsve/HtaMUo2rZmnvTvXvWj8/QZDX7sdHnaOuqFsUYrdhVvsxovlFX1Tmq9Qx7rJ7Y/PgOo3XH+j4Cu7dYq/WPvFejOIA16A/KlW/APbX+YIz8ofHP5yM/J6s7u18b07i/9uL9Z21EFjsaiZWt8bWotcZXUTw9u9gytkdz9rq6pqvo+fm2isXyz8vHrp6R33PkOdqeXossx0ibUeUSi6f5mCc2yeaytpLF07207gdtq98X0fsjPo+NX5WXA1jB/2G58g04w2pSy/o9cb3va6wlPiNrLSOx45re+lVi3lHZ/Wdjo6r8Nh5jjdYa61GcatzTM2m1jI1n8VqyPdZXHl2voJi+ZarxyGqLTWKekeb3+VgZm4/74h6/RtcZrZlpYnFji+Mr+dzG51Gu2Dd+zM/F/ij/HOIzOSOLtSr2R2XvTfYM9Kxmmt/Xe8+VV/tW4e+Aveu9CXF+5E3rqWJmsXv5RuuxdSbLKyOxZte0clSxqj3xVXw/u67GTDWe0dqMz1HJYvs9PkaM15oz2Zix8Z7RWD2xxpaq1iqv5o7WJnG/71fXlbO1zBrN11qnuRWxxNaMGMkXxfwj9VdzV9SpmNrjc+s6G6uuq3nTmrtClU/XrXqsb7Su4vdEMabJxla6Or7wE7AHMfqG27qsjc6ZHV9YH0XrWdic5v21p2c6S/GymKNs70x+nzO2lWK8mEst8l+jup65v9Usd1bno/PPTdfqj5pdL9l7nI2ddTZOVlM2NiPbY89R4/aq9+JI/I9E92n8vdp11j4rDmAFffFcyb7wZvNkX7jZq29+LIr5rZ+tW8Fiq/WoDr821nVVnWf5+/T1jzp6X5brUZ/JCKtd9fvrGTPPXGtH138UK55jxj+v6plla+KYxu8pqyeOafyM+OxXvBczMVbdx6yVX3eZK2PvxAHsnb2h/gtVfTX/hsf+GcpzJF62T/FG2XrtWXlfGeWayaHaRDVm96i4cY3G9TrK9iuGv+6xPL49otF7WUHPLrZMNS72PG3N2efq3x81sWufo1fTI7riOdpa36I451/j3D3FWvxrnFste+ZVLlv7CF97qk+1qyaNV/WjjwNYg31hqV0lflGL9X2LbKyqK4s34ui+1Vr31uP3ztyPrYtrbb+PpetH8ig1tZ6znl1sGc3p/ajWVWbXK4+vX3n92Edz9jketTqf4sXrsxRrRZ2+vuxVZvPZ2rP1rXwfFMte472dtTreR8EBzBn5wpr9Q9TS+qK2vm9ia0ZqsHmt7fHxtG8VX4OuY9+zfrw39bM5v7/aG3NkbJ3aKOUbiR/ZHrUVVMsz0DPJnq3us3puI8/B1qjZWjXN6dperf9RqfbsPnSf2f215iq2VvusZfyaUYrn2xlX1KlYWh/75sh9y8y+aDZvJothfRvHOfy/IO9kxR8MrxfP/2HROo1l+xTP7xvl47dqkpF12RrVpjqrGH5Oe8zIeq+Vz8et+Bri3pjP5/K0djTfyLoo1jYq1mpUr+djZrmy9TYWY/X6M6rcxuefdbSelt59Vvfi78PP+X421xPzeDHeall8X/No7ivrHIk9W/PI+hX31Irh52I9VX1+PBrJs8uunBzAAAAANuNXkAAAAJtxAAMAANiMAxgAAMBmHMAAAAA24wAGAACwGQcwAACAzTiAAQAAbMYBDAAAYDMOYAAAAJttPYBV/wxB658nOLInmlkbndl7xIr76sXI5lffp8WbbQAAfBaXH8CqD9bRD1z7l5L4cP7J2ec5y+LONmPvW9Z6cwAAfAZb/i1I+1C2NPFVYn9EtcfGZ7VyH6ntKOXq5Yzr4vrW/mrOxqPZGD1H9wEA8GwuP4BlH+yi1HGNjVf7qj0mu5WzH/pn94+Keaq82X2L1sc11bixuSxXld+05rwsX2UkHgAAz+LyX0HaB2v8cPVj+jBX37/Ga/X9Ho3p1csOCjOHgl2yOq2f1Wrj2VqN+WdjqrUaz3Kv5HPpOvav9Pr6+n4FAMDj2PKX8P2HvL1mB4tRinUmxizLFdsqFssfQnzs6j79nrPPwuc+4kxuAAA+qy1/CT9+yOvQoLneh7jWav2IXswZljM28bWNNr/Px8rYfNwX9/g1up51ZI+Zyacaj+YawU+8AAAfwZZfQRr70PUHB7v2/ZaZtSbmih/8sX+Gaptpft+IuM9Y7X6/X9NS3bvtPfo8RveqxpE6j+DwBQD4KO72l/B9Wltjfb16fiy7jnuq9ZKNtcyuP6uXz+Yzfo9ixFgz/TjnZXO9sTjfmhMbN9lcVB2+Xl5e3q8AAHgcW/4zFGbkwzj7IK72tfZIL96I2fVnjebz6+Ie9atxiX3v6Jzn19l15OdivLh3JJ8OYRy6AACPbttfwm+xD9fRD1k5sudZXPE8d7B61K7AwQsA8FFs+wmY0cEhS5kdGOKY7+s62ycjMXtm1581k8/Wmmz9yL23ch2d8/y6Vu4qno2bkVwAAHwkW34CZvyHqa5FH8BxvKL1prfP5nyrxj4a1T37PG1MbQefK+b21xm7B73PAAA8k21/CT+msXEb06tk4z5GXC/ZeLU2oxwzRmPP6NWsOqt7jft9vzUnNmbiuJfty6xeBwDAs9j6K0gAAABs/BUkAAAAfsABDAAAYKvb7f8DMVt09CJNqNoAAAAASUVORK5CYII=" alt="" />

解决代码及点评


/*
功能:打印魔方阵。所谓魔方阵是指这样的方阵,它的每一行、每一列和对角线之和均相等。例如:三阶魔方阵为
8 1 6
3 5 7
4 9 2
要求打印由 1到 的自然数构成的魔方阵。
提示:魔方阵中各数的排列规律如下:
⑴ 将“1”放在第一行中间一列;
⑵ 从“2”开始直到n×n为止各数依次按下列规则存放:每一个数存放的行比前一个数的行数减1,列数加1;
⑶ 如果上一个数的行数为1,则下一个数的行数为 n(指最下一行);
⑷ 当一个数的列数为 n,下一个数的列数应为1,行数减1;
⑸ 如果按上面规则确定的位置已有数,或上一个数是第 1行第 n列时, 则把下一个数放在上一个数的下面。 */ #include<stdio.h>
#include<stdlib.h> #define N 5 //N可以为任何奇数,因为偶数矩阵没有对角线,故不符合题意 void main(){
int a[N][N] = {0};
int num = 1; int i = 0;
int j = N/2; int ci = 0;
int cj = 0; while (1){
a[i][j] = num++; //将num当前数存入a[i][j];
ci = i; //保存i当前值;
cj = j; //保存j当前值; if (ci == 0)i = N - 1; //判断上一个是否在第0行
else i--;
if (cj == N - 1){ //判断上一个是否在第N-1列
j = 0;
i = ci-1;
}
else j++;
if (a[i][j] != 0 || (ci == 0 && cj == N - 1)){ //判断下一个位置是否被占有,或上一个是否在第0行,第N-1列
i = ci+1;
j = cj;
} int flag = 0;
for (int u = 0; u < N; u++){ //判断矩阵是否已满
int flag1 = 0;
for (int v = 0; v < N; v++){
if (a[u][v] == 0){
flag1 = 1;
break;
}
}
if (flag1 == 1){
flag = 1;
break;
}
}
if (flag == 0)break; //flag=0说明矩阵已经填满,跳出循环
} for (int u = 0; u < N; u++){ //打印矩阵
for (int v = 0; v < N; v++){
printf("%3d",a[u][v]);
}
printf("\n");
}
system("pause");
}

代码编译以及运行

由于资源上传太多,资源频道经常被锁定无法上传资源,同学们可以打开VS2013自己创建工程,步骤如下:

1)新建工程

2)选择工程

3)创建完工程如下图:

4)增加文件,右键点击项目

5)在弹出菜单里做以下选择

6)添加文件

7)拷贝代码与运行

程序运行结果

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAqUAAAG6CAYAAAAxsD/hAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAChwSURBVHhe7d0JvCVleSf+5/YmCChgaLqBWZJJYow0NIsoIIhsjdK4RKMSjbiNmUwWAhpQMsn4/xBRjCJMnCGZkUiIimYyZlMxAtIkQkJkky3GxJlxEpqmLw1RBLqb7r7/eutU3a57us52t/cC32/n4Zx6q96l6vQn/bPOPeeOffYPvzTx7b//u6jd9rc3Vs8AAGBuXHzJJ6tnHWP3/cODE3fecWtc/Qe/E2NjY/HyE0+K405YE8uX718dAgAAs2PL5h/EvXffHr93xRUxMTExGU7LUHr+ue+KffbZN37h7PPi8VhW7gAAgLmy8jnL4qILfyMeeeThMpiWofR97/n38Wv/+UPx+NizqsMAAGBurdxraZz3nl+KD3/sf8TYGWecMXH00cfFMaf9VLUbAADmx4Zv3xGf+cxVnVD6ny/8rXhsYmm1CwAA5sdP/Kvl8a63/0wnlH7yU5+Nb/3zeLULAADmx08ctF8ZShdV2zGmlFJKKaXUPFdt8k7pt+9/qGoCAID58eMH/tDUt+//Yf2mahcAAMyPHzvgeVND6T8+8HC1CwDg6eGxRx+Lb//9/4lHHnm0apl7++yzV/z483849thrj3LbGjpr6OVHV+47Wii97k+vrp6N5keevyr+7Y//ZCxaNPnjqwAA8+Lmv7o9Vh/y72L5/s+rWubexgc3xZ13fSeOOe7wctsaOmvoZZdQ+p0Nj1S72o099mD1rN2isbEYWzQWExNR/sqoVMlXr70+XrrmNbH77s8utwEA5sv1X7051p7+0nj4+49XLXNv3+c8O774pa/HSaceU25bQ2cNvfy7Fft0ffo+hco+dejq1X1r1aGHxsGrDolVhxwShxTP6/ZSEVDbxlxw9dD18V8v+Gj85UMt++a6mnMvlHW07Z/TGo+//O1z44/ua9unlFJKTa/KG2fzWG3zLdQ11B+B37ld7Wv7U+5Lhzcfqz71n2o71bDnXJu8U/p/Nn6vamp35I+viHU33hu/e+O3Y9GSHbFo6UQsWrY9Fhd18etOjn333ac6suOkcz8f11/yxvjwRy+L49a8Jp69x57VntrGuPGyi+KrD1SbpSPizR/+2fjJamunu+N/vu+aWP6e8+Jl+1VNpV3HWP3WS+Ondx1gOOPXxm9/7I44ZJd5ZlOPc2nOHfOxjh66r0G5/aXY0NlbXd/hX4/er2mbTv+Np8zgNWzVa71J2ndF3Fk+PyBObRxz3+d/JT5zR+d5aeXpcc7Zp8QPpeet16XamDLmKOcPwGy77i9uijPOOH7e7xD++Z//ZZy85thye9g13LxuXdz+N7dUW70d/pIXxzEnnFBtteu5hu89Vmyld7N3hsGOieLPWPz1jWkNf1u1pbmOimOOPyFuvvHGuP2WnWsr1/Cyl5XvkHdyZecd8omJFDQ7m/vuvceUNfTyw8ufO/Xt+/87/v1qV7sjf2z/uKEIpX/2rX+KxSmQLt1e1I7i+fY4+7hj+4bS4097bXsovfSD8eApl8UbXlg13XtVXHDVbcU/8I22yvgNF8fn4u3xSy9fXrUkaYxPRbz5/J0B6qO3xyHvrbbnXcs5tWg/l4Xo7vjDSzfEy3/llCgvZ3l9H4iTLn5r7Nfz9Rj+Nd3VcNdvOnr//flg3HXor3Xay7VGvKU4vxQi7/v82XH98mrfFL2vy0+WY34l9vuVnWN8Ot4VF71xVToSgHmWwtir1h4Xj/xgc9Uy9/bZc7f4sy/+1ZRAOMwaLrvoQ/H5z/63aqu3N/7Mf4yzL3h/tdWu1xo2TQnGVXosn42VsfS3P3xx/NHnf7dsS17/xp+LI4oAelsRlrvbf+l951db7Z5XBOPmGnr5t/s9Z+rb9+kWa796bPPW8rh99l4a//vhDfF34/8vvvXQd+PvN/3fsj1Jp1X/LOl+q3b+hqi28RYV16F4KG/bTrYdfFZ8+L1r48Gr/iD+rtle1P4HHx5x1zdj05T2aoziT7m9/NQ4+fD1cde9GxvHzGe1nFNLtZ/LQqxD4k3nnBr719vLD41DD3ggHhof8Ho02/q8prvWcNdvOtW63vFvxl0PHBknn7h/Z/vg0+K0A26Le+/r7C+WUiym7e9v7+uyaGz/ePk5Z8XB1b6DVx0ZsWHDU+C1Vkqpp2eVisf0bN6qmnfKGgppFf3+jKLZr/1PR3MN6bM/Y4sWlevrPKa1psdO26Li8YijX1IGzh07dpT1h1dfXgbS9Fi3lUG1OK4cr+iT+qUPtHeqM185ZvqHvVCvoVfVdv5MabnQPlUdd8t3/yG2LX08lu6+LZbu9mQsKSpJt3zTMfULseLf/FP5mLSOV89cHD+lfUX6B/7WuCf9XOFD18Zl510c69LPN6b2+GJ8LbVPGaOYr9m/ahpb9GCsu/SX4/P33R2fP++X432XXhsPlcdU25N1VdxX9y3na2x3HXvZuger9rZ91xbbH4yvrI+44/eLtmq+h9ZdPHnM5Fxt59Kce8o60jzFNVh3VWOuXuuojps81x7zpyrnqNvTdWq2N69BszbGg+sPiOUriuc9X490/ZttRTVf07Kt13Wt+0/d33Ntu6y1z7VoveYb4oHDD4uDJ/uvKM6tyJDj1XqKpTxwzQer8Xpdk1SN69K17767b42Vqw+N5V3tnWq/Dp3XbOd8932u2P+5u/v2UUop1V7lPyvlbbP0fH5qIj2kZ801pOfp38c+1ZTuhnZXU1v/ZhX/6RzXWEOyuGgvw2P1uLjYl6oMqcXjcSeeGEcec3S84cyfj+3bt5d19ac/Mfk8taf96bhFY4vLEJr61QGzE0Y74bRWr6FX1XaG0nKg3lX8pzxuMow+68nicWssfVbnDmpjzNKlJ15cPes1drHozs6+7Z2n6fnKOHHNi+KOu+6qtnceO7k9fm1ce/uBsXrVysl9d1x5ZxzysU/ER96zJpaP3RWfe+//iA2v/PX4SGpL9faxuOq9RQCoxihGq8ZLx345VpxfHfexX4/Vd34wPndvvW/qOOectCbOLI55xQERh729aEvzFev5zJcPiLPquT72tvIOWvu5NOduPi+exv3xlQ2HdcY4/1URX74y1o2nfZ11RJqvHP8dMXbnrTv79px/Y6y7bizeUre/vVjLlW3XYGrd99l0zq/ocw7DvKb9rmvXazbE2nZuD7gWLet9aGPnh1/r7bLKlmIdxfOD31yP9Yn41Vc+EFddUgTc5rFVTb0uRRXX/dL3/lKcX9Tdh6a/G+nv49Q+/a7D8pPeH2cdfmtc+7WNMXbvVXHVhlfFr7750L59dh1fKaVUquI/RfApwtPi/nXTunVx6UUXDax0XFv/KVX8e1bO21xD+jeuDH69K9m0aVNZybm//uuTlTT3tfXvrtY1FI/1Xc0yFNbHFIfXYfX4E0+KFxXB88y3/GI88sgjk5W2U/txJxWBtAqUO8faWZNtXdehV9U6V6DQdlCzaunO6NI6kC7bGsuWbSnbJ3bsKB9btYxXj9nefmCsSHed9l8T515yQZy4f7Vv1WFx+O13xr1Tjr0/rrn4F+O89xR18W2x+v07j08Of0cdxIq6986444BXxc+evGKy/9iqVxRB8htxd/qHvb4a9bHNsd9zYVyzPmLDxhQUWsapqtO92t5/RayMb8Tvv+dDcUP3p9m7z6U5d/N5quJ6vGLN6s7z/VfH6iL4pv8VUK/jlFXVcWMr4sTTXlR1Tcf2mr847i1rYuxrH+qc26e+UfYpduw6d1X3fvYX4/fH3h3nTrl2ba9HNXdXTb6m/a5reVzXa9br9UnV/Xr1uxaputa7fEVxIet9VZWptKst1fKTT4/D198W93S9jq3Xpfx7+1/jt4o65K7iHD/21V3D7IDrcPBb3h0rv3xh8dqsj1eclf4H1eA+Simldq3OvwPlQ1/fuPnm8mcmB1U6bqBqvuYaUlt61q+SLVu2lJVccuGFk5U097X1b1ZtyhoKndCY2lIAXVxul23prmc6dvGi+PoNXyvO86/j4x/9T5Nzpkrbqf2mr91QjFEcn0Jp0afsV4fU8nkKpI05U1ufqtX/rLce1KxaGUbLQLqlvEu6ZFnn7fu77rk37rr7nrLSj5VuLhb/xBNPlPvaxutUuXNq273XxDVjR8aq5V3tZa2OQ4/4RucO0mTbgfHK9/+3+OjHU/1anDSlX/f4ne2pbamKwJSCbPkn5b3UVjw58NVxXjnuznpPGT56jVP1m3y+On6m7PeuGLvqF+JXz70obijvcHb2TTmX5tzN50UlZVu1nZo622lH2pi6b2dbj/nHvxofP/cX4tNj7+qc1/tfHZ2cW+wr/+ycO9V9n/mF+P34ufjoW6pgPFltr0dn/inHTXlNi/09r2u1v+43WVVb99qmbHeOKY+brO627vUW+zc8GOOT+zfG+IaIlSt2/R8bqZLi2eR27+uys1a95ec6YXbyda+rGKzvdejMlxRbQ/dRSinVVcX/6yw/7ZKe9KvCd77znYFVauvfqMmnjTWkKjb6V2Hr1q1lXXzRebtUva/U1n9Klf9XPO2soZbuYBapsRMoy6rualah8q+u+1r87U03T5nvnPf+5uTz1J72/+X11xf//nYCbSfUVlU+74xbm7wOPao2dChNE6xf/514979eG+9Y+Zo4a7+fjjfvfWa8ac+frUbYqfNzB+mHYTsfemobr6y0L/2pt++5Mt57xfo4/azTyg+RjI3/RVxyzgcbQW4sDl7z6og77twZJEYZf9XhccT9fxqfvr4Rou65Jr4cRWAq766Wq00DTh57/T3VcUXd++krO3fZdtn3zbihHrM5Z7H+G8pjVsRJv/qBOP3A++PBjdW+oqaeS2Purudps+5TVr29yzo2xg1f6dz1LLd7zb/xgVhfhJv6Tu/43bfG+ta5i/E++h/jL1Z+ID72s+3Bq/X1SH/q7e7XtN91TVX0v/3Ob07uG7/+k/Hl+4+KQ8s7oGlt62Nj9fdhyroHXYuqpqx31elxejT6lH8XXl3dbf1mXP3pneu499O/G7cfWP896XNd0t/ZRr/x67+4s1/z7/OA65Dm27D2A3H+2ogvX/UX1XoHXDullFK7VLK4CEuLi5DUr5Inn3xyYCVt/ZtVvn1faK6hE9jqINheSduc3ZW09W9WOudk8loUz9PaygBZ7E9tncd0V7Na96LFReC8KX7z/ztncq7zL/hIvPi4Y8vHui3t/9uv31SeU+fuaBVEq7nqcFrO11xDj6pNfiXUhkc7t4N7+dfP2yP23qM4wWLy7VufjMVLFhfPlxZ7tsfEtm2xdVvxv0SKDLpt+7bYvmNHuYi0uEv+y+VxymveFHvs8pVQG+L6j3wgvnR/tZkc+Jp433mnxeQX8Dz4lfjoRbfGYRf8pzhp/6qt7PfJiLNSW/N5tXtSZ/wNp/1OvPmQqql0Z3zm7N+J26qtiKPiHZe9Iw5OT8v51sdpU7b/pAg+HUe8szHWlH07x9h43W/Gh//8nyfPZeMf/If4vfSjjcmR/yEuKULMTo31R2PuKetI6/1irJi8Bl3nPGUdB8XpZxwQX7r9gMnreE/r/J1rU1/7A448KqI4Zpe57/q9OPeKnd9V1lHM0ff1GPCaJj2va6f/hpVHxW231vM2Xp/C5PUtTFl3ahhwLTr6Xb+pc0Xz/JvnMeC6NNe469+vxt/nHtehfM0eqOerrunK6rXree0AaPPlP18Xr331CfEvj1V3GHu48bpry6A1yFEvPTZedvIp1Va7vfdYFn/8p+vilWd0vkt0Ia3h0c1FYJuicwOxiITlsxu/+tX4m7/6eqep8OLjXhovP/XUWNfV/pKi/WVFexkpU8ed2XLSXrstmbKGXlbs9ayp31P64A/6X6g//oP/nqJutbWrpUuXFLsXx5Nbt0yeXrLyX/1wHPqiY2L3Z8/erxndeO2F8aEHzoiPv7UZ8GZB8Q/+b31wfbzivzSCyRybPJc1G2Zn7iIwnXPNAfH+87uC4Byas9djpnpciwW7XgBm3Zf+7IZ43WtPjO893rnDOB+e++yl8b/++Gtx+qteXm4vpDV8/4nmGlKua6a2jrEyoDbb6/xXtJVdqiPSnc6JzpGTR6SsWH096HN2n7qGXvbfc9lov2b0jDPfHmt+6md61olnvCFevvZ1cWpX++qjjo3ddt+9dczp1v6nviqOvPX2uKdl30xq/O5vxPoDD+i8zTxPVZ/L9dOa+8G4/uLfa1yHb8ZnPnlLHHDEYVnOYbZfj9Fq+GuxMNarlFJq3iq9lbx4/qr+oM9CXEPneXpM1cx/qU/nrfeUMDvHdto6x1XHpj9VQ/HfzmO1XbeVb+un521raKna5J3S8ce7b+c+g9z1yTj7v6dfnfXieNcn3hXz+rt3Zjr3g9fERy78QtTvmB/46gvjvFNWVFvPMK4FAF2+du3NceThPxErV87X+4cRDzywMW69/Vtx4inHlNvW0FlDL/s9e8nUt+8fenx7tQsA4OnhB48+Hn/z13fEE0/M368Z3X333eIlRx8We+7V+dFFa+j/I5w/9OzFU0Pppif6fM8oAADMgeftvmjqz5SWPwSglFJKKaXUfFZl8k7pw5t3/fQVAADMpX13G+u8fb927dqJK668umcoveW6L1TPAABgdGeddVZ86/5Hq62pUih959vOHC6U3nJL+nQ4AACM5oILLoiDDjpo9kLp5ZdfXrUAAPBMsHnz5hgfH48lS5bEsmXLyl8f2pS+Z3RiYmLK940m9XeQpv5btmwZKpROHRkAADIQSgEAyE4oBQAguzn5mdJ169bFCSecUG11pLZeuo/tpXuMfv3qY4cdexRt5zcbRjm/ftrW1z12bS7OAwB4enhK/0xpr/BTSyGorlHU4zb79ppr0BpmYq7GHuX8+hnUpx6/OQ8AQG6zFkpTGJqrwDaKuVrDQjm/Xhb6+gCAp5/FixeXd1DT40zNWigddOdtpnfmhulfh7KZzNPLTNc/rOkGy/laHwBAkoJoejv/JS95Sfk402Ca7YNOMwmQbX3nMpDOh/k6lzR2XQAA05ECaKoXvOAFsdtuu8W73/3uGQfTLKF0JqFrUN/uwPVUCV9t5zWba0/jNit5qlwbAGDhqAPpwQcfHC984Qvj5JNPjsMOOywuu+yyGQXTeQ+lbeFrWP36NgNXc3/bsQvdU3HNAMAzQwqdb3vb2+INb3hDvP71r48XvehFZTg9+uij48Ybb9zlE/rDyvb2/ai6A2nadqdveK4XADAbtm/fHldeeWX8xm/8RrzpTW+KNWvWxPHHHx9HHXVUvOxlL4sdO3ZUR45m1kJpd+iZqxA0zLjd65gN3fN2b89UW9ge5Y5p93q6t2c6PgBAkkLp1q1by3ryyScnH+tK+6djTr48HwCAp76n9JfnAwDAqIRSAACyE0oBAMhOKAUAIDsfdAIAoFX6oNLdd98d3/3ud2PTpk1V6069Pui09957x4/+6I+WH3Aa9oNOQikAAK1SKP3iF79Y/n77fffdt2qNMogmaX/6WtKJiR1lW/11Uf/yL9+L73znH+K4447L8+n7+jswm9+F2TRo/0x0j13XbGkbu65RDdNnumMn/frV4053bADgmSV9JVQdSFPw3LZtezy5bVsRPp+Mxx/fHI899lg8+oPH4nvfezTGH9oU//TP68vf+rThwQ1ln2HNWiitQ076QvbmF7XXBu2fLfX4zXlm00zHHuacZ3Jd+vVtew0AAAZJYTRV+m1NZW3fUd0VfTK2bNla3g1N9cQTmyf3jWrePuj0TA9CKRDOZSAdNH69TxgFAKajE0p3BtPtRfjctn1bbNu2LZ4swmkKqBPF/jrAjmrWQunTPXTO9PyG6T+T4DjT9QEA5DQnd0r7havmHb25CFH1+PUcc2W2z2Eur0nTfF0fAIBRzHooHRSuUnu9bzaDUT3uXI3fNOgcZyKN3Vz3bJ/DfFwfAIBRzWooncuwtlDM1TnWYbGu2mzPAwCwEM1aKO0Oa2m7eSeue3u2zfX4AADPdOmrnpYtWxbPetay2G23Z8Vz9tornvvc58Q+++wd++67T+y55x7VkaObk7fv28JhW1idzbuAcz3+TDXXlXRvN3UfN4zu8bq3F/r1AQAWvkWLFsWaU0+JXzn77PjQRR+Myy69JD7x25fFH3/hj+Kbd95WBNXdqiNH5zc6AQDQKv3Gpk996lPx1re+tfyap0WLFheB9Jfj2GOPjb332ac6KmLPPfeMvfbaK/bZ54fi/vvXx3Ofu1fc/Ndfj59+/U/n+Y1OAAA8faXvJ73k45fGT73udXHCCS+Po456SRxxxIvix37s+bHffivKEDtdQikAAEOZy7fvhVIAAIb2whe+MI4//vg4+phjJuvgVavigAMPrI6YHqEUAIChePseAIDsvH0PAMCCsGbNmjjjjDPi1OKxrqNe/OL44R/5keqI6cn2lVBz9V2Zbd/NOao0Rlvf5tjJqOMP6t+9PxlljlHHH3X9AMAzS/dXQhXRsWyfmNgRO3ZMxOOPPxHbt28v39bfvn1H/OAHP4hNmx5+6nwlVFv4mg31uClsTTdw9Vpb29ijnMeg/t37R51j1PGTYccGAEhSAN26dWsRNLcWgXVLfP/RR+N73/t+PPLIv8TDDz9ShNLHqiNHN++hdK6CUDN0TUfq329tzTA3HwRGAOCZZF5D6UyD41ya69A5yvjTCaSDxh9lfgCA+TZvoXS+Ammap6650Bx7uucyTP+ZXKdB4890/QAAsy3L2/d1KEqaz2dDClp12JrtsZOZjl/36RUIZ7rmYcfvtR8AIId5C6V1mKur9kwKR8MGwuleE4EUAHiqmvc7pU9VKdDVoW46ugNhr/FmK5B2jz9oPwBAP+kroVKlr39KVX4t1PbO805tjx2prajpyBJK28LSTLWFrVECXrNf0r090/Fr3ePWusef7hy9xq8N2g8A0C2F0fQ9pNu2bSu/Fio972w/2ant2yb3db7PdHTZvjwfAICFLX15/p/8yZ/ES1/60thrr73KIJruiKbcmcLno48+WrZNpD/l3dLOndTHHnss/vEfvx2nnHLK0F+eL5QCANAqhdI77rgjvvvd78amhzdVrYPt/dy9Y/ny5XHooYcKpQAAzEwKpePj47FkyZJYtmxZLFo09Sc/x8bGyjum6bEpbadK/Rf0rxkFAIAmoRQAgOyEUgAAshNKAQDIbk5Caa/vway/I7NZ09Gr32yMnczV+MP2n87Ywxh2fgCA+TbrobRX2Knb05fB15WMGo6GHT8ZdexkrsYftv8oY45ipusHAJhLsxZKU8AZJeSMGohGHX9Ucz3+IHM9fzOMAgAsNLMWSkcJPdMJX4PGH2X+NjPtP8ig8ed6fgCAhSzbB53mMoDVoXc256jHmo07mnOxvmE11y8EAwALxbyH0pkGukHmMnClMZvjTmeO3IGweQ5z/VoAAAwry53SuQpkC/0O4EJfHwBALvMeSucrkKbtubgTON1gOV/r62W+5wMAGMXY2rVrJ6648up4ePNE1TTVLdd9IW655Za4/PLLq5Z2vQJPM7y1HTNsuBs0/jDz9zPq+ocdtzbX6x9G9xyzOTYA8PSzefPmGB8fjyVLlsSyZcti0aKp9zPHxsZiYmKifGxK26lS/y1btsRBBx0U37r/0WrvVPvuNhbvfNuZsxdKAQB4epnPUJrlZ0oBAKBJKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAILs5CaW9vnOzNmj/IL36p/Zmjapf/+59dc2muRw7mevxAQCma9ZD6aCwM9Mw1Kt/3Z6+EH7QF9K3GbZ/vb953GyY6foHmevxAQBmYtZCaQo4/ULOoP2DzLQ/AAAL16yF0uYduDaD9g8ybP/pBteZrm+mcs8PAJDT0+aDTs1AVwfT6Ya8fv3rO7bTDb/DmOn629RjzfXaAQCm42kTStuC3HTCV69AmLablcxFuOs1/2xorj2ZizkAAKbjaRNKm6YbtuYyEA4j9/wAALk8LUPpdHQHwrRdtyXd27Nt0PyzpXseAICFYNZCaXeIGnV7kEH928LcdIJX97i12Rp/kF7zz4a5GhcAYKbG1q5dO3HFlVfHw5snqqapbrnuC3HLLbfE5ZdfXrUAAPBMsHnz5hgfH48lS5bEsmXLYtGiqfczx8bGYmJionxsStupUv8tW7bEQQcdFN+6/9Fq71T77jYW73zbmd6+BwAgP6EUAIDsZjWUDvszi72OG+VnHvsdO+rPTs7WvLVBx8x07TPtDwCw0IwUSuc68KQPDs1kjtS37t9rnPqYZvVrn2vzNQ8AwEI28gedUohqfhJ9kLZPqDfH6NZvX1N9XPcahumb9Jpn0PzN+Zrzt60l6R6re/xB293a9rfNW+s3FgBAP0+ZDzqlwNOsXm39pEDVrF5tTamtbb5RpOO7x26O209zvubxvdoHaTvHpFd7rd5fz9ucu7kNALDQzfgrofoFp2Yoajsu7U/t/cJT2/5effqN1Tb/sOox+83bT1v/+vmgx6butmGOAQCYrvm8Uzqr31M6bCCqjxsUstrGS21J2zxtx8+meu5amqvXGrv3tfVNuvu3jZd090/qOQZpGw8AYJAFGUrf+MY3Vi1TA9UwukNRv+A1KEDVc063fzLMunutuXuO5nbbuG3rGdSnaVD/QUY5FgCgaUHfKZ2NkFMHsTTOoFCW1PPVcw/Tp6l7vYPOod/+5r7mOprHD9s/GbTdrdf+Znv9fNBYAAD9PKVCadrupVd4Srr3tY3ba7t7X61Xe7d03CDd47T16V5Pv2OStvU125r9u49L2vo31fsHHQcAMIz5DKVTR56mFIC6q1sKSjMJS9Pt10tzrd3Vprmvfp7Op6ntmFp9bH0duvum7Wbftv31Y7PqtqQ5HwDAU8mshNLuoFSHpKbukNaUjp/vQNW93mZNR3f/7u36/Orr0DzfdEz3+aftum9S76/71lW3NY8FAHiqmZW375vbtV7tSdu+OlTVAatX32Q6c/Yyap/u49v6jzLmMOP1k44fpHv82ijz1HL3BwDmz1Pi7ftmuEjPu2tUKaCkSn3nKqzU62qur56zTb/z6LdvkNR3Nvqnqq9bXUnzsX4OALCQTSuU1mGoVoefZk1HPW56zKmev9damutsO6bt/NMxdaX9bcf009a/e4x6X5Ie03a3Xn2Hlbs/APD0NK1Q2i9QtAWh2qB99bjpsd+xtXRMs3q1Jel5r3WPGpDq9XWvt1fVxzQfm7qPbW7Xbf36J+m47n1pu+4PALCQzfg3OrWFoba2Wve+OjS1Hd9rnH7jD6uet5eZjj9f+l2/ZDauFQDwzDSfP1M641AKAMDT01Pig04AADBbhFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIChLV68OJYtW1bW0qVLJx/rSvunQygFAGBoKXQee+yxsXr16rKOOOKIWLNmTZxzzjlx+eWXx6JF04uXQikAAEPbvn173HTTTWUgPeaYY+K1r31t/PzP/3yceeaZ5eOOHTuqI0cjlAIAMLQUSlNdeeWVsXz58jKcPv/5z4+jjjqqDKRp33QIpQAA9DU2NjalUvhM9YEPfKB8O/8FL3jBjAJpIpQCANBXCp5twXRiYiJe+cpXlo9pu/uYUQilAAD0lUJp+gBTd+hMQXTbtm0zDqSJUAoAQF91IO1WtzXDaNtxwxBKAQDoq+0u6TA1CqEUAIC+eoXSpH6cKaEUAIC+Hn/88WnVKMbWrl07ccWVV8fDmyeqpqluue4LcdJJJ1VbAAAwmoMOOii+df+j1dZU++42Fu9825mDQ+lPHLhX9QwAAKZnxqEUAADmSh1K/UwpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZTX76HgAAcpj8SqhqGwAAMoj4/wE/57F+HuxLMwAAAABJRU5ErkJggg==" alt="" />




基于visual Studio2013解决C语言竞赛题之0523魔方阵的更多相关文章

  1. 基于visual Studio2013解决C语言竞赛题之0525拉丁方阵

     题目

  2. 基于visual Studio2013解决C语言竞赛题之0401阶乘

      题目 解决代码及点评 这个是一道经典的教科书题目,基本上每本基础的c/c++语言教科书都会有这个题目 用来演示循环语句 #include <stdio.h> #include ...

  3. 基于visual Studio2013解决C语言竞赛题之0205位数求和

     题目

  4. 基于visual Studio2013解决C语言竞赛题之0201温度转换

    题目 解决代码及点评 #include <stdio.h> #include <stdlib.h> void main() { float f; float c; float ...

  5. 基于visual Studio2013解决C语言竞赛题之0409 100以内素数

       题目 解决代码及点评 在已经知道素数是怎么判断的基础上,增加循环,可以判断出100以内的素数 /******************************************* ...

  6. 基于visual Studio2013解决C语言竞赛题之0408素数

      题目 解决代码及点评 判断一个数是不是素数的方法,一般是看n是不是能被n以内的某个整数(1除外)整除 为了提高效率,这个整数范围一般缩小到n的平方根 如果在这个范围内的整数都不能整除,那么 ...

  7. 基于visual Studio2013解决C语言竞赛题之0407最大值最小值

      题目 解决代码及点评 这道题考察循环和比较 /*********************************************************************** ...

  8. 基于visual Studio2013解决C语言竞赛题之0406数列求和

      题目 解决代码及点评 这个题目,还是考察for循环的使用 以及数列规律,该数列的特点是第n个分子 = 第n-1个分子 + 第n-2个分子,分母也是此规律 而另外一个规律是第n个分子和第n- ...

  9. 基于visual Studio2013解决C语言竞赛题之0405阶乘求和

      题目 解决代码及点评 这道题和上一道题类似,第n个累加项 = n-1累加项的n倍 由于有这个规律,我们可以用一个for循环实现 但是例子代码并没有这么做,大家可以回去修改下代码,使得代码更 ...

随机推荐

  1. Gimp制作圆角透明图片

    用蒙版制作圆角透明图片,步骤如下: 1,用Gimp(2.8版本)打开图片 2,在图层窗口右键当前图层创建蒙版 3,选择蒙版类型黑色(全透明) 4,结果如下 5,用圆角矩形选择工具选择图片,设置圆角半径 ...

  2. poj 2263&& zoj1952 floyd

    Fiber Network Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 2725   Accepted: 1252 Des ...

  3. [Asp.net]常见word,excel,ppt,pdf在线预览方案(转)

    引言 之前项目需要,查找了office文档在线预览的解决方案,顺便记录一下,方便以后查询. 方案一 直接在浏览器中打开Office文档在页面上的链接.会弹出如下窗口: 优点:主流浏览器都支持. 缺点: ...

  4. JS,JQuery各种获取屏幕的宽度和高度

    JQuery: $(document).ready(function(){ alert($(window).height()); //浏览器当前窗口可视区域高度 alert($(document).h ...

  5. ubuntu14.04LTS ruby on rails 开发环境

    小弟初学 Ruby,也没用过Linux. 在网上搜了好多关于开发环境的配置的文章,但总是和实际有点出入,找了N遍文章后,终于找到最简环境安装配置方法,分享下 推荐用 Ubuntu,感觉对于习惯用Win ...

  6. NOIP2015前

    时间过得好快...明天就要出发去NOIP了...然后再过半年就要省选了....希望自己能取得好成绩吧... NOIP2015 bless all !

  7. mysql 添加用户并授权(记录)

    mysql> GRANT ALL PRIVILEGES ON *.* TO monty@localhost IDENTIFIED BY 'something' WITH GRANT OPTION ...

  8. json对象的操作,json工具

    项目中经常用到json,现在把写了几个js函数,用来获取json对象或者json字符串的长度,以及获取其的key值,value值,并且返回. 这样以后可以直接拿来用,可以省去不少麻烦,也方便以后查看. ...

  9. eclipse 查看快捷键

    无意中发现,ctrl+shift+L 能打开快捷键窗口

  10. (Problem 36)Double-base palindromes

    The decimal number, 585 = 10010010012(binary), is palindromic in both bases. Find the sum of all num ...