Beauty of Array(模拟)
Time Limit:2000MS Memory Limit:32768KB 64bit IO Format:%lld & %llu
Description
SAT was the first known NP-complete problem. The problem remains NP-complete even if all expressions are written in conjunctive normal form with 3 variables per clause (3-CNF), yielding the 3-SAT problem. A K-SATproblem can be described as follows:
There are n persons, and m objects. Each person makes K wishes, for each of these wishes either he wants to take an object or he wants to reject an object. You have to take a subset of the objects such that every person is happy. A person is happy if at least one of his K wishes is kept. For example, there are 3 persons, 4 objects, and K = 2, and
Person 1 says, "take object 1 or reject 2."
Person 2 says, "take object 3 or 4."
Person 3 says, "reject object 3 or 1."
So, if we take object 1 2 3, then it is not a valid solution, since person 3 becomes unhappy. But if we take 1 2 4 then everyone becomes happy. If we take only 4, it's also a valid solution. Now you are given the information about the persons' wishes and the solution we are currently thinking. You have to say whether the solution is correct or not.
Input
Input starts with an integer T (≤ 100), denoting the number of test cases.
Each case starts with a line containing three integers n, m, K (1 ≤ n, m, K ≤ 30). Each of the next nlines contains K space separated integers where the ith line denotes the wishes of the ith person. Each of the integers in a line will be either positive or negative. Positive means the person wants the object in the solution; negative means the person doesn't want that in the solution. You can assume that the absolute value of each of the integers will lie between 1 and m.
The next line contains an integer p (0 ≤ p ≤ m) denoting the number of integers in the solution, followed byp space separated integers each between 1 and m, denoting the solution. That means the objects we have taken as solution set.
Output
For each case, print the case number and 'Yes' if the solution is valid or 'No' otherwise.
Sample Input
2
3 4 2
+1 -2
+3 +4
-3 -1
1 4
1 5 3
+1 -2 +4
2 2 5
Sample Output
Case 1: Yes
Case 2: No
题解:n个人找对象,对象从1--m,负数代表不要,正数代表要;现在给一组数,问是否满足所有人的意愿;
代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<set>
using namespace std;
int mp[][]; int vis[];
int p;
int n, m, k;
set<int>st;
bool js(){
for(int i = ; i <= n; i++){
int flot = ;
for(int j = ; j <= k; j++){
if(st.count(mp[i][j])){
flot = ;
break;
}
}
if(!flot)return false;
}
return true;
}
int main(){
int T, kase = ;
scanf("%d", &T);
while(T--){
scanf("%d%d%d", &n, &m, &k);
for(int i = ; i <= n; i++){
for(int j = ; j <= k; j++){
scanf("%d", &mp[i][j]);
}
}
scanf("%d", &p);
st.clear();
memset(vis, , sizeof(vis));
int x;
for(int i = ; i <= p; i++){
scanf("%d", &x);
st.insert(x);
vis[x] = ;
}
for(int i = ; i<= m; i++){
if(!vis[i])st.insert(-i);
}
if(js())printf("Case %d: Yes\n", ++kase);
else
printf("Case %d: No\n", ++kase);
}
return ;
}
Beauty of Array(模拟)的更多相关文章
- DP ZOJ 3872 Beauty of Array
题目传送门 /* DP:dp 表示当前输入的x前的包含x的子序列的和, 求和方法是找到之前出现x的位置(a[x])的区间内的子序列: sum 表示当前输入x前的所有和: a[x] 表示id: 详细解释 ...
- zoj The 12th Zhejiang Provincial Collegiate Programming Contest Beauty of Array
http://acm.zju.edu.cn/onlinejudge/showContestProblem.do?problemId=5496 The 12th Zhejiang Provincial ...
- 第十二届浙江省大学生程序设计大赛-Beauty of Array 分类: 比赛 2015-06-26 14:27 12人阅读 评论(0) 收藏
Beauty of Array Time Limit: 2 Seconds Memory Limit: 65536 KB Edward has an array A with N integers. ...
- ZOJ 3872 Beauty of Array
/** Author: Oliver ProblemId: ZOJ 3872 Beauty of Array */ /* 需求: 求beauty sum,所谓的beauty要求如下: 1·给你一个集合 ...
- Beauty of Array(思维)
Beauty of Array Time Limit: 2 Seconds Memory Limit: 65536 KB Edward has an array A with N integ ...
- 2015 浙江省赛 Beauty of Array (思维题)
Beauty of Array Edward has an array A with N integers. He defines the beauty of an array as the summ ...
- ZOJ 3872: Beauty of Array(思维)
Beauty of Array Time Limit: 2 Seconds Memory Limit: 65536 KB Edward has an array A with N integers. ...
- PHP用Array模拟枚举
C#中枚举Enum的写法: /// <summary> /// 公开类型 2-好友可见 1-公开 0-不公开 /// </summary> public enum OpenSt ...
- Beauty of Array
Description Edward has an array A with N integers. He defines the beauty of an array as the summatio ...
随机推荐
- Android开源库集锦
一.兼容类库 ActionBarSherlock : Action Bar是Android 3.0后才开始支持的,ActionBarSherlock是让Action Bar功能支持2.X后的所有平台, ...
- 泛泰A880S升级官方4.4.2 binx教程
之前为了尝鲜,直接官升4.4.2,红砖了.越南兄弟说官方没更新升级工具,所以导致升级到78%就停止了,他给的办法,我试也没成功.官方旧版本号又不能升级S0221118以上的版本号,新版的离线升级工具没 ...
- boost库asio详解1——strand与io_service区别
namespace { // strand提供串行执行, 能够保证线程安全, 同时被post或dispatch的方法, 不会被并发的执行. // io_service不能保证线程安全 boost::a ...
- LabView培训
labview基础到高级官方超全完整视频教程包括数据采集,其他模块的部 分教程,废话不多说. 免费下载地址在结尾. LabVIEW 本事编程(低级)培训LabVIEW作为前辈的图形化编程言语斥地环境, ...
- chart.js制作折线图
<!DOCTYPE html> <html> <head> <title></title> </head> <script ...
- 关于 linux ssh 的配置.
一.禁止root用户远程登录: # cd /etc/ssh # vi sshd_config 将 permitRootLogin 后面的值改成 no 如下图: 然后再重启sshd服务即可,如下: # ...
- Flashback Recovery Area的设置与取消
在Oracle 10g中, Flash back家族分为以下成员: Flashback Database, Flashback Drop,Flashback Query(分Flashback Quer ...
- gdal_merge.py
1 gdal_merge.py: 合并(Merge)/镶嵌(Mosaic)工具.要求图像必须是相同坐标系统.具有相同的波段数:可以不同分辨率,可以有重叠区域(后加入图像覆盖先加入的图像). 注意:只能 ...
- MVVM模式
MVVM的最大缺点貌似是,报错后不好找, 在安卓6.0的时候出现了一个工具叫做databinding,其中呢主要是用来帮助实现MVVM模式的快速开发 在使用databinding的时候我们需要做的 ...
- 0124——KVC KVO模式
1.KVC KVC是Key-Value-Coding的简称,它是一种可以直接通过字符串的名 字(key)来访问类属性(实例变量)的机制.而不是通过调用Setter.Getter方法访问.当使用KVO. ...