ll PowMod(ll a,ll b,ll MOD){
ll ret=;
while(b){
if(b&) ret=(ret*a)%MOD;
a=(a*a)%MOD;
b>>=;
}
return ret;
}
ll fac[];
ll Get_Fact(ll p)
{
fac[]=;
for(int i=;i<=p;i++)
fac[i]=(fac[i-]*i)%p;
}
ll Lucas(ll n,ll m,ll p){
ll ret=;
while(n&&m){
ll a=n%p,b=m%p;
if(a<b) return ;
ret=(ret*fac[a]*PowMod(fac[b]*fac[a-b]%p,p-,p))%p;
n/=p;
m/=p;
}
return ret;
}

lucas模板的更多相关文章

  1. BZOJ2982: combination Lucas模板

    2982: combination Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 734  Solved: 437[Submit][Status][Di ...

  2. lucas 模板 洛古模板题

    #include<bits/stdc++.h> #define int long long using namespace std; ; int a[maxn]; int quick(in ...

  3. bzoj 2142 礼物——扩展lucas模板

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2142 没给P的范围,但说 pi ^ ci<=1e5,一看就是扩展lucas. 学习材料 ...

  4. bzoj 2982 combination——lucas模板

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2982 明明是lucas定理裸题…… 非常需要注意C( )里  if ( n<m ) r ...

  5. BZOJ 2982: combination Lucas模板题

    Code: #include<bits/stdc++.h> #define ll long long #define maxn 1000003 using namespace std; c ...

  6. 排列组合lucas模板

    //codeforces 559C|51nod1486 Gerald and Giant Chess(组合数学+逆元) #include <bits/stdc++.h> using nam ...

  7. GYM100633J. Ceizenpok’s formula 扩展lucas模板

    J. Ceizenpok’s formula time limit per test 2.0 s memory limit per test 256 MB input standard input o ...

  8. Lucas模板&快速幂模板

    /* *********************************************** Author :guanjun Created Time :2016/5/20 0:28:36 F ...

  9. Lucas定理模板【bzoj2982】【combination】

    (上不了p站我要死了,侵权度娘背锅) Description LMZ有n个不同的基友,他每天晚上要选m个进行[河蟹],而且要求每天晚上的选择都不一样.那么LMZ能够持续多少个这样的夜晚呢?当然,LMZ ...

随机推荐

  1. poj 2115 C Looooops(推公式+扩展欧几里得模板)

    Description A Compiler Mystery: We are given a C-language style for loop of type for (variable = A; ...

  2. gdb 调试coredump文件过程

    gdb 调试coredump文件过程: 第一步:首先需要一个进程的coredump文件,怎么搞出coredump文件呢? 1. ps -fax|grep                 进程名称 找到 ...

  3. webpack配合vue.js实现完整的单页面demo

    本篇文章主要是我在开发前研究了webpack+vue.js的单页面应用,因为需要用到node的npm,所以确保安装了node,建议官网安装最新的稳定版本.并且在项目中需要加载一些npm包,由于npm的 ...

  4. ASP.NET通用权限验证组件实现

    沙发(SF)通用权限验证组件 开篇 本篇介绍通用权限验证的实现代码思路,总共分为导入参数.解析XML.根据XML配置进行处理.返回结果. 代码架构图 1.   类介绍 1.SFWebPermissio ...

  5. struts2之chain的使用

    /** * 实现功能表单提交给action1先处理,再交由action2进行处理,中间传递参数a,b **/ /** * 1. 配置文件 **/ <action name="actio ...

  6. struts1:Struts配置文件初解

    struts-config.xml是Struts的核心文件.该文件可配置各种组件,包括,FormBeans,Actions,ActionMappings,全局转发GlobalForwards,数据源D ...

  7. 【Android】设备标识简介(imei imsi mac地址)

    IMEI: 1- 意义: 参考http://zh.wikipedia.org/zh-cn/IMEI  国际移动设备辨识码 ,共15位,和厂商,产地等有关. 2- 获取: 直接查看设备信息,设置-关于手 ...

  8. ckeditor 使用手册

    CKEditor使用手册 在使用CKEditor过程中遇到了一些问题,现把它整理成手册,以便随时翻阅. 在页面<head>中引入ckeditor核心文件ckeditor.js <sc ...

  9. Chapter 02:复合 VS 继承

    复合优先于继承,继承是实现代码重用的有力手段,并不是所有情况都适用,使用不当会导致软件变得很脆弱.与方法调用不同的是,继承打破了封装性. 总而言之,组合和继承,都能实现对类的扩展.但是要分具体情况用哪 ...

  10. nodejs学习随机记录

    1. nodejs的顶层对象:global(nodejs中没有window) 2. nodejs一个文件就是一个模块 每个模块都有自己的作用域 通过var声明的变量,只属于当前模块下,并非全局的 va ...