Monthly Expense
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 14158   Accepted: 5697

Description

Farmer John is an astounding accounting wizard and has realized he might run out of money to run the farm. He has already calculated and recorded the exact amount of money (1 ≤ moneyi ≤ 10,000) that he will need to spend each day over
the next N (1 ≤ N ≤ 100,000) days.

FJ wants to create a budget for a sequential set of exactly M (1 ≤ M ≤ N) fiscal periods called "fajomonths". Each of these fajomonths contains a set of 1 or more consecutive days. Every day is contained in exactly one fajomonth.

FJ's goal is to arrange the fajomonths so as to minimize the expenses of the fajomonth with the highest spending and thus determine his monthly spending limit.

Input

Line 1: Two space-separated integers: N and M 

Lines 2..N+1: Line i+1 contains the number of dollars Farmer John spends on the ith day

Output

Line 1: The smallest possible monthly limit Farmer John can afford to live with.

Sample Input

7 5
100
400
300
100
500
101
400

Sample Output

500

Hint

If Farmer John schedules the months so that the first two days are a month, the third and fourth are a month, and the last three are their own months, he spends at most $500 in any month. Any other method of scheduling gives a larger minimum monthly limit.

Source

解题思路:

题意为给定一个n个数组成的序列,划分为m个连续的区间,每一个区间全部元素相加,得到m个和,m个和里面肯定有一个最大值,我们要求这个最大值尽可能的小。

用二分查找能够非常好的解决问题。这类问题的框架为,找出下界left和上界right, while(left< right), 求出mid,看这个mid值是符合题意,继续二分。最后right即为答案。

本题中的下界为n个数中的最大值,由于这时候,是要划分为n个区间(即一个数一个区间),left是满足题意的n个区间和的最大值,上届为全部区间的和,由于这时候,是要划分为1个区间(全部的数都在一个区间里面),    1<=m<=n, 所以我们所要求的值肯定在 [left, right] 之间。对于每个mid,遍历一遍n个数,看能划分为几个区间,假设划分的区间小于(或等于)给定的m,说明上界取大了, 那么 另 right=mid,否则另 left=mid+1.

代码:

#include <iostream>
#include <stdio.h>
#include <string.h>
using namespace std;
const int maxn=100010;
int money[maxn];
int n,m; int main()
{
scanf("%d%d",&n,&m);
int left=-1,right=0;
for(int i=1;i<=n;i++)
{
scanf("%d",&money[i]);
if(left<money[i])
left=money[i];
right+=money[i];
}
while(left<right)
{
int mid=(left+right)/2;
int cnt=0;
int cost=0;
for(int i=1;i<=n;i++)
{
if(cost+money[i]>mid)
{
cnt++;//划分区间,不包含当前的money[i]
cost=money[i];
}
else
cost+=money[i];
}
cnt++;//最后一个cost值也要占一天
if(cnt<=m)
right=mid;
else
left=mid+1;
}
cout<<right<<endl;
return 0;
}

[ACM] POJ 3273 Monthly Expense (二分解决最小化最大值)的更多相关文章

  1. POJ 3273 Monthly Expense二分查找[最小化最大值问题]

    POJ 3273 Monthly Expense二分查找(最大值最小化问题) 题目:Monthly Expense Description Farmer John is an astounding a ...

  2. poj 3273 Monthly Expense (二分搜索,最小化最大值)

    题目:http://poj.org/problem?id=3273 思路:通过定义一个函数bool can(int mid):=划分后最大段和小于等于mid(即划分后所有段和都小于等于mid) 这样我 ...

  3. POJ 3273 Monthly Expense(二分查找+边界条件)

    POJ 3273 Monthly Expense 此题与POJ3258有点类似,一开始把判断条件写错了,wa了两次,二分查找可以有以下两种: ){ mid=(lb+ub)/; if(C(mid)< ...

  4. POJ 3273 Monthly Expense(二分答案)

    Monthly Expense Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 36628 Accepted: 13620 Des ...

  5. POJ 3273 Monthly Expense 二分枚举

    题目:http://poj.org/problem?id=3273 二分枚举,据说是经典题,看了题解才做的,暂时还没有完全理解.. #include <stdio.h> #include ...

  6. poj 3273 Monthly Expense (二分)

    //最大值最小 //天数的a[i]值是固定的 不能改变顺序 # include <algorithm> # include <string.h> # include <s ...

  7. 二分搜索 POJ 3273 Monthly Expense

    题目传送门 /* 题意:分成m个集合,使最大的集合值(求和)最小 二分搜索:二分集合大小,判断能否有m个集合. */ #include <cstdio> #include <algo ...

  8. 第十四届华中科技大学程序设计竞赛 K Walking in the Forest【二分答案/最小化最大值】

    链接:https://www.nowcoder.com/acm/contest/106/K 来源:牛客网 题目描述 It's universally acknowledged that there'r ...

  9. POJ 3273 Monthly Expense(二分搜索)

    Description Farmer John is an astounding accounting wizard and has realized he might run out of mone ...

随机推荐

  1. nginx install

    ./configure --prefix=/home/allen.mh/local/nginx --with-http_ssl_module --with-http_sub_module --with ...

  2. C学习之指针强化

    char *p = (char *)malloc(100); malloc是用于分配内存的函数,它的参数为int型,表示分配多少个字节长度,其返回类型为void*,在这里用char*就是强制转化,指定 ...

  3. 这两天写的mybatis配置文件,主要是有输出和输入的存储过程

    <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE mapper PUBLIC "-/ ...

  4. R与数据分析旧笔记(一)基本数学函数的使用

    创建向量矩阵 > x1=c(2,3,6,8) > x2=c(1,2,3,4) > a1=(1:100) > length(a1) [1] 100 > length(x1) ...

  5. querySelectorAll 和 jQuery选择器

    参考 http://xahlee.info/js/jquery_diff_querySelectorAll.html http://stackoverflow.com/questions/115035 ...

  6. Windows 8.1 正式版微软官方原版镜像下载(新增10/17新版下载)

    中文版:中国区OEM预装版本,特定国家版,锁定语言,其它功能和核心版没有区别.简体中文单语言版:锁定语言,其它功能和核心版没有区别.专业版+核心版[零售版][推荐]:镜像内包含专业版(Professi ...

  7. C功底挑战Java菜鸟入门概念干货(一)

    一.认识Java 1.Java 程序比较特殊,它必须先经过编译,然后再利用解释的方式来运行.  2.Byte-codes 最大的好处是——可越平台运行,可让“一次编写,处处运行”成为可能.  3.使用 ...

  8. Web网页中动态数据区域的识别与抽取 Dynamical Data Regions Identification and Extraction in Web Pages

    Web网页中动态数据区域的识别与抽取 Dynamical Data Regions Identification and Extraction in Web Pages Web网页中动态数据区域的识别 ...

  9. 假设给Contact的List加一个用字母排序的导航

    效果图: 这样写Layout: <? xml version="1.0" encoding="utf-8"? > <LinearLayout ...

  10. Codeforces 235B Let&#39;s Play Osu! 概率dp(水

    题目链接:点击打开链接 给定n表示有n个格子 以下每一个格子为O的概率是多少. 对于一段连续 x 个O的价值就是 x*x ; 问: 获得的价值的期望是多少. 思路: 把公式拆一下.. #include ...