时间限制:0.25s

空间限制:4M

题意:

在 n*n(n≤10)的棋盘上放 k (k<=n*n)个国王(可攻击相邻的 8 个格子),求使它们无法互相攻击的方案数。


Solution:

采用状态压缩,用k位(k<=n)的二进制数1的位置代表棋盘放置的国王的位置.

先用预处理,求出statu[i]仅考虑一行时满足要求的方案,c[i]是statu[i]状态放置的棋子数.

f[i][j][p] 代表第i行放置状态为 p时且已经放置了j个棋子的方案数

状态转移方程:f[i][j][p]=Σf[i-1][j-c[j]][pp],(满足i-1行的pp与p不冲突)

判断p与pp是否冲突 只要满足

(p & pp) == 0 &&  (p << 1 & pp) == 0 && ( pp<< 1 & p) == 0

最后输出ans=Σf[n][k][pi]

参考代码:

#include <iostream>
#include <cstdio>
#define LL long long
using namespace std;
int powT[11];
int statu[1 << 10], c[1 << 10];
LL f[11][111][1 << 10];
int main() {
int n, k, tol = 0, t;
scanf ("%d %d", &n, &k);
for (int i = 0; i <= ( (1 << n) - 1); i++) {
if ( ( (i & (i >> 1) ) == 0) && ( (i & (i << 1) ) == 0) ) {
statu[++tol] = i;
for (t = i; t > 0; t >>= 1)
if (t & 1) c[i]++;
}
}
for (int i = 1; i <= tol; i++)
f[1][c[statu[i]]][statu[i]] = 1;
for (int i = 2; i <= n; i++) {
for (int j = 0; j <= k; j++)
for (int pu = 1; pu <= tol; pu++)
for (int pv = 1; pv <= tol; pv++) {
int p1 = statu[pu], p2 = statu[pv];
if (j >= c[p1] && (p1 & p2) == 0 && ( p1 << 1 & p2) == 0 && ( p2 << 1 & p1) == 0)
f[i][j][p1] += f[i - 1][j - c[p1]][p2];
}
}
LL ans = 0;
for (int i = 1; i <= tol; i++)
ans += f[n][k][statu[i]];
printf ("%lld", ans);
}

  

SGU 223.Little Kings的更多相关文章

  1. 状压DP SGU 223 Little Kings

    题目传送门 /* 题意:n*n的矩阵,放置k个king,要求king互相不能攻击,即一个king的8个方向都没有另外的king,求方案个数 状态压缩DP:dp[i][num[j]][s] 代表在第i行 ...

  2. SGU 223 Little Kings(状压DP)

    Description 用字符矩阵来表示一个8x8的棋盘,'.'表示是空格,'P'表示人质,'K'表示骑士.每一步,骑士可以移动到他周围的8个方格中的任意一格.如果你移动到的格子中有人质(即'P'), ...

  3. SGU 223 little kings BSOJ2772 状压DP

    1896 [SCOI2005]互不侵犯King [问题描述]在n*n(1<=n<=10)的棋盘上放k(0<=k<=n*n)个国王(可攻击相邻的8 个格子),求使它们无法互相攻击 ...

  4. Little Kings - SGU 223(状态压缩)

    题目大意:在一个N*N的棋盘上放置M个国王,已知国王会攻击与它相邻的8个格子,要求放置的额国王不能相互攻击,求放置的方式有多少种. 分析:用dp[row][state][nOne],表示本行状态sta ...

  5. SGU题目总结

    SGU还是个不错的题库...但是貌似水题也挺多的..有些题想出解法但是不想写代码, 就写在这里吧...不排除是我想简单想错了, 假如哪位神犇哪天发现请告诉我.. 101.Domino(2015.12. ...

  6. 今日SGU 5.23

    SGU 223 题意:给你n*n的矩形,放k个国王,每个国王不能放在别的国王的8连边上,问你有多少种方法 收获:状态DP,因为每行的放置只会影响下一行,然我们就枚举每行的状态和对应的下一行的状态,当两 ...

  7. Little Kings

    sgu223:http://acm.sgu.ru/problem.php?contest=0&problem=223 题意:n*n的格子放k个国王,一共有多少种放发. 题解:简单的状压DP. ...

  8. Android Weekly Notes Issue #223

    Android Weekly Issue #223 September 18th, 2016 Android Weekly Issue #223 本期内容包括: Offline时间戳处理; Acces ...

  9. POJ2699 The Maximum Number of Strong Kings

    Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 2102   Accepted: 975 Description A tour ...

随机推荐

  1. 【转】模拟器上安装googleplay apk

    原文网址:http://blog.sina.com.cn/s/blog_9fc2ff230101gv57.html 1.进入到sdk\android-sdk-windows\tools>目录下: ...

  2. 关于java、Android中Math的一些用法

    java.math.Math类常用的常量和方法: Math.PI 记录的圆周率Math.E记录e的常量Math.abs 求绝对值Math.sin 正弦函数 Math.asin 反正弦函数Math.co ...

  3. rspec学习02

    元数据 RSpec-core存储元数据哈希每实例和组,其中包含他们的描述,声明的位置等等,这个hash控制很多RSpec核心的功能,包括输出格式化程序(访问描述和位置),和before,after钩子 ...

  4. [原]ubuntu下制作openstack-havana源

    ubuntu下可以用apt-mirror下载openstack的源: 1.安装apt-mirror: apt-get install apt-mirror 2.配置/etc/apt/mirror.li ...

  5. Google改变生活

    前言 前天,在图书馆,无意之中,发现这本书,特写博客来与各位前来下榻本园的博友们,分享和学习!  本博文的主要内容有: 参考此书.感谢韩梅编者,出于此,我写本博文为了方便日后自己的查阅使用和来我园的共 ...

  6. Erasing Edges - SGU 136(构造多边形)

    题目大意:已知一个多边形上的每条边的中点,还原出来一个多边形. 分析:因为偶数是不固定的,所以可以为任意起点,奇数只有一个,可以所有中点加减算出来第一个点,然后就是简单的向量计算点的位置了...... ...

  7. 用js判断一个复选框是否被选中

    <html> <head>        <title>            复选框全选.全不选.反选.必选一个        </title>    ...

  8. c#基础语言编程-程序集和反射

    程序集 什么是程序集? 1.程序集(assembly)是一个及一个以上托管模块,以及一些资源文件的逻辑组合. 2.程序集是组件复用,以及实施安全策略和版本策略的最小单位. 3.程序集是包含一个或者多个 ...

  9. HDOJ 4696 Answers 乱搞

    乱搞: rt.有1就能输出全部的数,否则仅仅能输出偶数 Answers Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/1 ...

  10. Delphi 记事本 TMemo

    Windows记事本记事本     描述:     用Delphi模仿的Windows记事本 界面和功能都和Windows的记事本一样,是用Memo实现的而不是RichEdit 可以执行以下功能 文件 ...