题目大意:给定一个4位素数,一个目标4位素数。每次变换一位,保证变换后依然是素数,求变换到目标素数的最小步数。

解题报告:直接用最短路。

枚举1000-10000所有素数,如果素数A交换一位可以得到素数B,则在AB间加入一条长度为1的双向边。

则题中所求的便是从起点到终点的最短路。使用Dijkstra或SPFA皆可。

当然,纯粹的BFS也是可以的。

用Dijkstra算法A了题目之后,看了一下Discuss,发现了一个新名词,双向BFS。

即从起点和终点同时进行BFS,相遇则求得最短路。

借鉴了思想,自己动手实现了代码。原本以为双向比单向快一倍而已,其实远远不止。

笔者用30W数据分别测试了单向和双向。环境为CodeBlock+MinGW4.7,Debug,双向时间为8.618s,而单向为惊人的139.989s!

简单思考了一下,也还是合理的。单向每次的增长是指数级的,而双向的指数只有单向的一半,优化程度相当高。

好了,贴代码~首先是双向BFS的Dijkstra:

#include <cstdio>
#include <cstring>
#include <queue>
using namespace std; const int maxn=;
int prime[maxn];
const int maxV=;
int first[maxV],vv[maxV*maxV],nxt[maxV*maxV];
int num[maxV];
bool vis[][maxV];
int index; bool check(int a,int b)
{
int k=a-b;
if(k%==)
return true;
if(k< && k%== && a/==b/)
return true;
if(k< && k%== && a/==b/)
return true;
if(a/==b/)
return true;
return false;
} void calPrime()
{
for(int i=;i<maxn;i++) if(!prime[i])
{
for(int j=*i;j<maxn;j+=i)
prime[j]=true;
if(i>= && i<)
{
num[++index]=i;
prime[i]=index;
}
} int e=;
memset(first,,sizeof(first));
for(int i=;i<=index;i++)
for(int j=i+;j<=index;j++) if(check(num[j],num[i]))
{
nxt[e]=first[i],vv[e]=j,first[i]=e++;
nxt[e]=first[j],vv[e]=i,first[j]=e++;
}
} struct Node
{
int node;
int level;
bool operator<(const Node& cmp) const
{
return level>cmp.level;
}
} p,q; int Dijkstra(int sta,int end)
{
if(sta==end)
return ; memset(vis,,sizeof(vis)); sta=prime[sta];
end=prime[end]; priority_queue<Node> pq[];
p.node=sta;
p.level=;
vis[][p.node]=true;
pq[].push(p); p.node=end;
p.level=;
vis[][p.node]=true;
pq[].push(p); for(int i=; !pq[].empty() && !pq[].empty() ;i++)
{
int sel=;
if(pq[].size()>pq[].size())
sel++;
int level=pq[sel].top().level;
while(!pq[sel].empty())
{
p=pq[sel].top();
if(p.level!=level) //先判断,否则会pop掉丢失情况
break;
pq[sel].pop(); for(int e=first[p.node];e;e=nxt[e])
{
if(vis[-sel][vv[e]])
return i+;
if(!vis[sel][vv[e]])
{
q.level=p.level+;
q.node=vv[e];
vis[sel][vv[e]]=true;
pq[sel].push(q);
}
}
}
} return -;
} int main()
{
calPrime(); int T;
scanf("%d",&T);
while(T--)
{
int sta,end;
scanf("%d%d",&sta,&end);
int ans=Dijkstra(sta,end);
if(ans==-)
printf("Impossible\n");
else
printf("%d\n",ans);
}
}

然后是单向的BFS+Dijkstra:

#include <cstdio>
#include <cstring>
#include <queue>
using namespace std; const int maxn=;
int prime[maxn];
const int maxV=;
int first[maxV],vv[maxV*maxV],nxt[maxV*maxV];
int num[maxV];
bool vis[maxV];
int index;
int count; bool check(int a,int b)
{
int k=a-b;
if(k%==)
return true;
if(k< && k%== && a/==b/)
return true;
if(k< && k%== && a/==b/)
return true;
if(a/==b/)
return true;
return false;
} void calPrime()
{
for(int i=;i<maxn;i++) if(!prime[i])
{
for(int j=*i;j<maxn;j+=i)
prime[j]=true;
if(i>= && i<)
{
num[++index]=i;
prime[i]=index;
}
} int e=;
memset(first,,sizeof(first));
for(int i=;i<=index;i++)
for(int j=i+;j<=index;j++) if(check(num[j],num[i]))
{
nxt[e]=first[i],vv[e]=j,first[i]=e++;
nxt[e]=first[j],vv[e]=i,first[j]=e++;
}
} struct Node
{
int k;
int w;
bool operator<(const Node& cmp) const
{
return w>cmp.w;
}
} p,q; int Dijkstra(int sta,int end)
{
memset(vis,,sizeof(vis));
end=prime[end]; p.k=prime[sta];
p.w=;
vis[p.k]=true; priority_queue<Node> pq;
pq.push(p); while(!pq.empty())
{
p=pq.top();
pq.pop(); if(p.k==end)
return p.w; for(int e=first[p.k];e;e=nxt[e]) if(!vis[vv[e]])
{
q.k=vv[e];
q.w=p.w+;
vis[q.k]=true;
pq.push(q);
}
}
return -;
} int main()
{
calPrime(); int T;
scanf("%d",&T);
while(T--)
{
int sta,end;
scanf("%d%d",&sta,&end);
int ans=Dijkstra(sta,end);
if(ans==-)
printf("Impossible\n");
else
printf("%d\n",ans);
}
}

测试数据我放在了百度云,有兴趣可以下载下来试一下:http://pan.baidu.com/share/link?shareid=4217669741&uk=2804348991

POJ 3126 Prime Path 解题报告(BFS & 双向BFS)的更多相关文章

  1. 双向广搜 POJ 3126 Prime Path

      POJ 3126  Prime Path Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 16204   Accepted ...

  2. BFS POJ 3126 Prime Path

    题目传送门 /* 题意:从一个数到另外一个数,每次改变一个数字,且每次是素数 BFS:先预处理1000到9999的素数,简单BFS一下.我没输出Impossible都AC,数据有点弱 */ /**** ...

  3. POJ 3126 Prime Path(素数路径)

    POJ 3126 Prime Path(素数路径) Time Limit: 1000MS    Memory Limit: 65536K Description - 题目描述 The minister ...

  4. poj 3126 Prime Path bfs

    题目链接:http://poj.org/problem?id=3126 Prime Path Time Limit: 1000MS   Memory Limit: 65536K Total Submi ...

  5. POJ - 3126 - Prime Path(BFS)

    Prime Path POJ - 3126 题意: 给出两个四位素数 a , b.然后从a开始,每次可以改变四位中的一位数字,变成 c,c 可以接着变,直到变成b为止.要求 c 必须是素数.求变换次数 ...

  6. POJ 3126 Prime Path 素数筛,bfs

    题目: http://poj.org/problem?id=3126 困得不行了,没想到敲完一遍直接就A了,16ms,debug环节都没进行.人品啊. #include <stdio.h> ...

  7. POJ 3126 Prime Path(BFS 数字处理)

    意甲冠军  给你两个4位质数a, b  每次你可以改变a个位数,但仍然需要素数的变化  乞讨a有多少次的能力,至少修改成b 基础的bfs  注意数的处理即可了  出队一个数  然后入队全部能够由这个素 ...

  8. (简单) POJ 3126 Prime Path,BFS。

    Description The ministers of the cabinet were quite upset by the message from the Chief of Security ...

  9. POJ 3126 Prime Path【从一个素数变为另一个素数的最少步数/BFS】

    Prime Path Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 26475 Accepted: 14555 Descript ...

随机推荐

  1. 严重: Exception starting filter struts2

    我是用了右键-Add Struts.. 所以,不应该在WebRoot->WEB-INF->lib中加入5个基本包了...

  2. 使用CHttpFile从服务器端正确的读取数据

    前段时间在给软件做升级提示模块的时候发现一个问题,就是使用CHttpFile对象无法从服务器端获取到正确的响应数据长度,无论是使用CHttpFile:: QueryInfo方法,还是使用CHttpFi ...

  3. 【HeadFirst设计模式】8.模板方法模式

    模板方法 定义: 在一个方法中定义一个算法的骨架,而将一些步骤延迟到子类中.模板方法使用得子类可以在不改变算法结构的情况下,重新定义算法中的某些步骤. 策略模式: 定义一个算法家族,并让这些算法可以互 ...

  4. Node.js:JavaScript脚本运行环境

    Node.js https://nodejs.org/ 2016-08-03

  5. C# WinForm实现控件拖动实例介绍

    主要是设计控件的MouseDown.MouseLeave.MouseMove事件.一步步来吧:1.定义一个枚举类型,描述光标状态 private enum EnumMousePointPosition ...

  6. 建站服务器的最优选择之Windows Or Linux

    转载于:http://www.0553114.com/news/detail-702287.html 不管是个人建站,还是中小型企业建站,选择一款合适的主机是站长朋友们共同的心愿.主机是选择Windo ...

  7. Activity组件

    Activity 间书作者:阿敏其人 关于Activity博文上 间书作者:阿敏其人 关于Activity博文中 间书作者:阿敏其人 关于Activity博文下

  8. Css3 阴影效果

    box-shadow:#333 0 0 5px 10px; //上下左右有阴影-webkit-box-shadow: #666 0px 5px 10px; -moz-box-shadow: #666 ...

  9. codeforces edu round3

    B. The Best Gift  传送门:http://codeforces.com/problemset/problem/609/B Emily's birthday is next week a ...

  10. 【JPA】表达条件查询的关键字

    1.通过解析方法名创建查询 框架在进行方法名解析时,会先把方法名多余的前缀截取掉,比如 find.findBy.read.readBy.get.getBy,然后对剩下部分进行解析.并且如果方法的最后一 ...