前言:

当做重要决定时,大家可能综合考虑多个专家而不是一个人的意见。机器学习处理问题也是如此,这就是元算法背后的思路。元算法是对其他算法进行组合的一种方式,前几天看了一个称作adaboost方法的介绍,今天和大家分享一下。
一、bagging算法:基于数据随机抽样的分类器构建方法
自举汇聚法,也称为bagging算法,就是从原始数据集中选择S次后得到S个新数据集的一种技术。新数据集和原数据集大小相等,每个数据集都是在原始数据集中选择一个样本来进行替换得到的,这里的替换意味着可以多吃选择同一个样本。
当S个数据集建立好之后,将某个机器学习算法等别作用在每个数据集中就得到了S个分类器。当我们要对新的数据进行分类时,就可以应用这S个分类器进行分类,与此同时,选择分类器投票结果中更多的类别作为最终的分类结果。
 

  bagging方法的主要过程

  主要思路:

  i)训练分类器

  从整体样本集合中,抽样n* < N个样本 针对抽样的集合训练分类器Ci

  ii)分类器进行投票,最终的结果是分类器投票的优胜结果

  但是,上述这种方法,都只是将分类器进行简单的组合,实际上,并没有发挥出分类器组合的威力来。直到1989年,Yoav Freund与 Robert Schapire提出了一种可行的将弱分类器组合为强分类器的方法。并由此而获得了2003年的哥德尔奖(Godel price)。

  Schapire还提出了一种早期的boosting算法,其主要过程如下:

  i)从样本整体集合D中,不放回的随机抽样nn 个样本,得到集合 D1

  训练弱分类器C1

  ii)从样本整体集合D中,抽取 nn 个样本,其中合并进一半被 C1 分类错误的样本。得到样本集合 D2

  训练弱分类器C2

  iii)抽取D样本集合中,C1 和 C2 分类不一致样本,组成D3

  训练弱分类器C3

  iv)用三个分类器做投票,得到最后分类结果

由于boosting分类结果是基于所有分类器的加权求和结果的,因此boosting算法和bagging算法不一样,bagging算法中的分类器权重是相等的,而boosting算法分类器权重并不想等,每个权重代表的是其对应的分类器在上一轮叠代中的成功度(识别率)。

能否使用弱分类器和多个实例来构建一个强分类器?

  到了1995年,Freund and schapire提出了现在的adaboost算法,其主要框架可以描述为:

  i)循环迭代多次

  更新样本分布

  寻找当前分布下的最优弱分类器

  计算弱分类器误差率

  ii)聚合多次训练的弱分类器

Adaboosting是Adaptive boosting算法的缩写,其运行过程如下:训练数据中的每个样本,并赋予一个权重值,这些权重构成向量D。一开始这些权重都被初始化为相同的值,首先在训练数据上训练处一个弱分类器并计算该分类器的错误率,然后在同一数据集上再次训练弱分类器。在分类器的第二次训练中,将会调整每个样本的权重,其中第一次被正确分类的样本权重值将会降低,而被错分的样本权重值将会提高(对分类错误做出一定的惩罚)。为了综合所有的弱分类器得到最终的分类结果,Adaboost为每个分类器都分配了一个圈子alpha,这个alpha值是基于每个弱分类器的错误率进行计算的,错误率e=(未被正确分类的样本数)/所有样本数。

alpha的计算公式:

  计算出alpha后,可以对权重向量进行更新,使得那些正确分类的样本权重降低错分样本权重升高

在下图中可以看到完整的adaboost算法:

图1.1  adaboost算法过程

  现在,boost算法有了很大的发展,出现了很多的其他boost算法,例如:logitboost算法,gentleboost算法等等。在这次报告中,我们将着重介绍adaboost算法的过程和特性。

  简单来说,Adaboost有很多优点:

  1)adaboost是一种有很高精度的分类器

  2)可以使用各种方法构建子分类器,adaboost算法提供的是框架

  3)当使用简单分类器时,计算出的结果是可以理解的。而且弱分类器构造极其简单

  4)简单,不用做特征筛选

  5)不用担心overfitting!

  总之:adaboost是简单,有效。

  下面我们举一个简单的例子来看看adaboost的实现过程:

  图中,“+”和“-”分别表示两种类别,在这个过程中,我们使用水平或者垂直的直线作为分类器,来进行分类。

  第一步:

  根据分类的正确率,得到一个新的样本分布D,一个子分类器h1

  其中划圈的样本表示被分错的。在右边的途中,比较大的“+”表示对该样本做了加权。

  第二步:

  根据分类的正确率,得到一个新的样本分布D3,一个子分类器h2

  第三步:

  得到一个子分类器h3

  整合所有子分类器:

  因此可以得到整合的结果,从结果中看,及时简单的分类器,组合起来也能获得很好的分类效果,在例子中所有的。

  Adaboost算法的某些特性是非常好的,在我们的报告中,主要介绍adaboost的两个特性。一是训练的错误率上界,随着迭代次数的增加,会逐渐下降;二是adaboost算法即使训练次数很多,也不会出现过拟合的问题。

  下面主要通过证明过程和图表来描述这两个特性:

  1)错误率上界下降的特性

  从而可以看出,随着迭代次数的增加,实际上错误率上界在下降。

  2)不会出现过拟合现象

  通常,过拟合现象指的是下图描述的这种现象,即随着模型训练误差的下降,实际上,模型的泛化误差(测试误差)在上升。横轴表示迭代的次数,纵轴表示训练误差的值。

而实际上,并没有观察到adaboost算法出现这样的情况,即当训练误差小到一定程度以后,继续训练,返回误差仍然不会增加。

  对这种现象的解释,要借助margin的概念,其中margin表示如下:

  通过引入margin的概念,我们可以观察到下图所出现的现象:

  从图上左边的子图可以看到,随着训练次数的增加,test的误差率并没有升高,同时对应着右边的子图可以看到,随着训练次数的增加,margin一直在增加。这就是说,在训练误差下降到一定程度以后,更多的训练,会增加分类器的分类margin,这个过程也能够防止测试误差的上升。

Adaboost算法的实现:

对每次迭代:

找到最佳的单层决策树

将最佳单层决策树加入到单层决策树数组

计算alpha

计算新的权重向量D

更新累计类别估计值

如果分类错误率为0,退出循环

三、多分类adaboost

  在日常任务中,我们通常需要去解决多分类的问题。而前面的介绍中,adaboost算法只能适用于二分类的情况。因此,在这一小节中,我们着重介绍如何将adaboost算法调整到适合处理多分类任务的方法。

  目前有三种比较常用的将二分类adaboost方法。

  1、adaboost M1方法

  主要思路: adaboost组合的若干个弱分类器本身就是多分类的分类器。

  在训练的时候,样本权重空间的计算方法,仍然为:

  在解码的时候,选择一个最有可能的分类

  2、adaboost MH方法

  主要思路: 组合的弱分类器仍然是二分类的分类器,将分类label和分类样例组合,生成N个样本,在这个新的样本空间上训练分类器。

  可以用下图来表示其原理:

  3、对多分类输出进行二进制编码

  主要思路:对N个label进行二进制编码,例如用m位二进制数表示一个label。然后训练m个二分类分类器,在解码时生成m位的二进制数。从而对应到一个label上。

四、总结

  最后,我们可以总结下adaboost算法的一些实际可以使用的场景:

  1)用于二分类或多分类的应用场景

  2)用于做分类任务的baseline

  无脑化,简单,不会overfitting,不用调分类器

  3)用于特征选择(feature selection)

  4)Boosting框架用于对badcase的修正

  只需要增加新的分类器,不需要变动原有分类器

  由于adaboost算法是一种实现简单,应用也很简单的算法。Adaboost算法通过组合弱分类器而得到强分类器,同时具有分类错误率上界随着训练增加而稳定下降,不会过拟合等的性质,应该说是一种很适合于在各种分类场景下应用的算法。

附上adaboost算法的python代码:

1)单层决策树生成函数:

def stumpClassify(dataMatrix,dimen,threshVal,threshIneq):  %通过阈值比较对数据进行分类
retArray = ones((shape(dataMatrix)[0],1))
if threshIneq == 'lt':%分类是基于小于还是大于
retArray[dataMatrix[:,dimen] <= threshVal] = -1.0
else:
retArray[dataMatrix[:,dimen] > threshVal] = -1.0
return retArray
def buildStump(dataArr,classLabels,D):%遍历stumpClassify函数所有的可能输入值,并找到数据集上最佳的单层决策树
dataMatrix = mat(dataArr); labelMat = mat(classLabels).T
m,n = shape(dataMatrix)
numSteps = 10.0; bestStump = {}; bestClasEst = mat(zeros((m,1)))
minError = inf
for i in range(n):
rangeMin = dataMatrix[:,i].min(); rangeMax = dataMatrix[:,i].max();
stepSize = (rangeMax-rangeMin)/numSteps%每次改变的步长
for j in range(-1,int(numSteps)+1):
for inequal in ['lt', 'gt']:
threshVal = (rangeMin + float(j) * stepSize)
predictedVals = \
stumpClassify(dataMatrix,i,threshVal,inequal)
errArr = mat(ones((m,1)))
errArr[predictedVals == labelMat] = 0
weightedError = D.T*errArr
#print "split: dim %d, thresh %.2f, thresh ineqal: \
%s, the weighted error is %.3f" %\
(i, threshVal, inequal, weightedError)
if weightedError < minError:
minError = weightedError
bestClasEst = predictedVals.copy()%错误率最小的为最佳的单层分类器
bestStump['dim'] = i
bestStump['thresh'] = threshVal
bestStump['ineq'] = inequal
return bestStump,minError,bestClasEst

2)基于单层决策树的Adaboost的训练过程

def adaBoostTrainDS(dataArr,classLabels,numIt=40):
weakClassArr = []
m = shape(dataArr)[0]
D = mat(ones((m,1))/m)
aggClassEst = mat(zeros((m,1)))%类别累计估计值
for i in range(numIt):
bestStump,error,classEst = buildStump(dataArr,classLabels,D)
print "D:",D.T
alpha = float(0.5*log((1.0-error)/max(error,1e-16)))
bestStump['alpha'] = alpha
weakClassArr.append(bestStump)
print "classEst: ",classEst.T
expon = multiply(-1*alpha*mat(classLabels).T,classEst)%计算alpha值
D = multiply(D,exp(expon))%更新权重向量D
D = D/D.sum()
aggClassEst += alpha*classEst%累计类别估计值
print "aggClassEst: ",aggClassEst.T
aggErrors = multiply(sign(aggClassEst) !=
mat(classLabels).T,ones((m,1)))
errorRate = aggErrors.sum()/m
print "total error: ",errorRate,"\n"
if errorRate == 0.0: break
return weakClassArr

AdaBoost原理,算法实现的更多相关文章

  1. Adaboost提升算法从原理到实践

    1.基本思想: 综合某些专家的判断,往往要比一个专家单独的判断要好.在"强可学习"和"弱科学习"的概念上来说就是我们通过对多个弱可学习的算法进行"组合 ...

  2. [机器学习]-Adaboost提升算法从原理到实践

    1.基本思想: 综合某些专家的判断,往往要比一个专家单独的判断要好.在”强可学习”和”弱可学习”的概念上来说就是我们通过对多个弱可学习的算法进行”组合提升或者说是强化”得到一个性能赶超强可学习算法的算 ...

  3. Adaboost原理及目标检测中的应用

    Adaboost原理及目标检测中的应用 whowhoha@outlook.com Adaboost原理 Adaboost(AdaptiveBoosting)是一种迭代算法,通过对训练集不断训练弱分类器 ...

  4. 集成学习之Boosting —— AdaBoost原理

    集成学习大致可分为两大类:Bagging和Boosting.Bagging一般使用强学习器,其个体学习器之间不存在强依赖关系,容易并行.Boosting则使用弱分类器,其个体学习器之间存在强依赖关系, ...

  5. 机器学习之AdaBoost原理与代码实现

    AdaBoost原理与代码实现 本文系作者原创,转载请注明出处: https://www.cnblogs.com/further-further-further/p/9642899.html 基本思路 ...

  6. AdaBoost原理详解

    写一点自己理解的AdaBoost,然后再贴上面试过程中被问到的相关问题.按照以下目录展开. 当然,也可以去我的博客上看 Boosting提升算法 AdaBoost 原理理解 实例 算法流程 公式推导 ...

  7. 特别翔实的adaboost分类算法讲解 转的

    转https://www.cnblogs.com/litthorse/p/9332370.html 作为(曾)被认为两大最好的监督分类算法之一的adaboost元算法(另一个为前几节介绍过的SVM算法 ...

  8. 机器学习-分类器-Adaboost原理

    Adaboost原理 Adaboost(AdaptiveBoosting)是一种迭代算法,通过对训练集不断训练弱分类器,然后把这些弱分类器集合起来,构成强分类器.adaboost算法训练的过程中,初始 ...

  9. 使用 AdaBoost 元算法提高分类器性能

    前言 有人认为 AdaBoost 是最好的监督学习的方式. 某种程度上因为它是元算法,也就是说它会是几种分类器的组合.这就好比对于一个问题能够咨询多个 "专家" 的意见了. 组合的 ...

  10. 机器学习实战 - 读书笔记(07) - 利用AdaBoost元算法提高分类性能

    前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习笔记,这次是第7章 - 利用AdaBoost元算法提高分类性能. 核心思想 在使用某个特定的算法是, ...

随机推荐

  1. JavaScript---网络编程(1)-介绍、变量、运算符与语句

    JavaScript也是一种编程语言.并不是Java的分支哦. 可以直接在浏览器中运行的编程语言. JavaScript 的历史故事: 1.JavaScript语言与名称的由来(Netscape,Su ...

  2. 城市连动纯js代码DEMO

    前台代码 <!DOCTYPE html> <html> <head> <meta http-equiv="Content-Type" co ...

  3. 忘记gitlab的root密码

    甚至也忘记了邮箱,或许是默认邮箱无法使用. 需要在服务器上面直接修改数据: gitlab-rails console production user = User.where().first user ...

  4. Apache Commons 工具集使用简介

    Apache Commons包含了很多开源的工具,用于解决平时编程经常会遇到的问题,减少重复劳动.我选了一些比较常用的项目做简单介绍.文中用了很多网上现成的东西,我只是做了一个汇总整理. 一.Comm ...

  5. 问题-[WIN764位系统]操作UDL驱动不全处理

    http://www-01.ibm.com/support/docview.wss?uid=swg21503768 方法# 1 单击“开始——运行” 输入一个命令类似如下:        C:\Win ...

  6. [T-SQL]从变量与数据类型说起

     1.变量 学习计算机语言,难免不碰到这个名词,不过咱这里说的是MSSQL(微软SQL Server产品)里的数据库语言实现. 稍微对程序比较严谨的语言都要求使用之前都要声明变量先,比如c.c++,j ...

  7. 学习:Linux基础知识<一>

    >>硬盘分区模式 硬盘分区模式一般如下: -- /  (根目录) -- /usr    (操作系统) --/home (用户信息) -- /var    (默认服务器的登录文件,邮件与WW ...

  8. jetty之建立多Connector

    转自:http://blog.csdn.net/kongxx/article/details/7218787 在嵌入运行Jetty的时候,有时候想要启动两个端口,或者通过一个Jetty server提 ...

  9. At-rule | CSS @ 规则

    译自:MDN(Mozilla开发者网络) At-rule 一.什么是at-rules eg:@charset "utf-8"; at-rule 是CSS样式声明,以@开头,紧跟着是 ...

  10. jquerymobile知识点:动态ListView

    这里要讲的是jqueryMobile 中的ListView 动态的列表 <ul data-role="listview" data-inset="true" ...